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2. 

FOREWORD 

The Operations Research Center at the Massachusetts Institute of 
Technology is an interdepartmental activity devoted to graduate educa- 
tion and research in the field of operations research.  The work of 
the Center is supported by government grants and contracts.  The work 
reported, herein, was supported, in part, by the U.S. Army Research 
Office under Contract DAAG29-76-C-0064. 

The author also wants to acknowledge research support from the 
M.I.T. Energy Laboratory through Department of Energy Contracts 
Efl.l-i-4119 and EX-76-A-01-2295. 

V ABSTRACT 

This paper presents several mathematical programming models 
for planning expansion of electricity generating capacity by utilities. 
The objective considered is to minimize the cost of meeting a given 
set of demands over a multi-period planning horizon.  In this formu- 
lation, the problem naturally decomposes into two parts - determining 
the optimal plant capacity investments over the entire horizon and 
determining the optimal operating schedule for the generating plants 
in each period. 

This paper discusses how mathematical programming decomposi- 
tion techniques can be used to exploit this natural decomposition.- 
Because the operating problems often have simple structure which can 
be solved essentially in closed form, efficient decomposition algo- 
rithms for the entire problem can be formulated.  Three related models 
are presented - one based on linear programming, one based on non- 
linear programming for the case when plants are completely reliable, 
and one based on nonlinear programming for the case when plants can 
fail randomly.  In this probabilistic case, the technique of prob- 
abilistic simulation is used to determine expected operating costs 
and system reliabjn«-y,  

c »•The paper also discusses how these models can be used in peak- 
load pricing.«^The probabilistic capacity planning model can be used 
to calculate ft^e marginal costs attributable to demand at different 
times.  These marginal costs can be used in an equilibrium problem 
to determine pealcvload prices.  The equilibrium problem can be solved 
by a decomposition\approach in which the capacity planning model is 
used as a subproblei 
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CHAPTER 1 

INTRODUCTION AND SUMMARY 

Like other types of industrial firms, electric uti- 

lities have the problem of planning their capital invest- 

ments in generating (or manufacturing) plant to meet the 

future demands of their customers.  In general terms, the 

problem to be considered is to find a minimum cost capa- 

city expansion plan to meet forecast demands for electricity 

over a multi-year planning horizon, usually twenty to thirty 

years.  Cost in this problem has two components, the initial 

capital cost of each plant to be built and the continuing 

cost of operating the system of generating plants to meet 

the customers' demand. 

An important characteristic of the demand for electri- 

city is that it is highly time-dependent, varying consider- 

ably both in the course of a day and in different seasons 

of the year.  Thus, though enough generating capacity must 

be built to meet the peak levels of demand, some of that 

capacity will be idle during a significant fraction of the 

time.  Therefore, minimizing the cost of meeting demand 

involves trading-off the capital costs of the plants, which 

for a given tyoü of plant depends chiefly on its capacity, 

against their operating costs, which for a given type of 



10. 

plant depends chiefly on the amount of energy it generates. 

The amount of energy a plant generates is determined by the 

fraction of the time during which it operates.  A plant 

which operates almost all the time, called a base-loaded 

plant, must be inexpensive to operate, but it may be 

worth a high capital cost because it will seldom be idle. 

On the other hand, a plant which operates only during peak 

periods of demand, called a peak-loaded plant, will often 

be idle and so must not be expensive to build, though it 

may be worth operating at high cost for short periods of 

time.  Plants which fall between the base- and peak-loaded 

plants in the capital/operating cost trade-off, called 

cycling plants, are operated part-time, as the load cycles 

between base and peak levels.  The distribution of a utility's 

generating capacity among base-loaded, cycling, and peaking 

plants is called its generation mix. 

An important characteristic of the electric power 

industry is that utilities are obligated to serve whatever 

reasonable demands may be placed upon them by their customers. 

Thus utilities are very concerned with the reliability of 

the service they provide, and they maintain additional 

generating capacity beyond what is needed to meet the 

expected peak load to provide a reserve margin.  However, 

because of random fluctuations in demand and random failures, 
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or outages, of generating plants, utilities cannot guarantee 

that they will always be able to meet demand, so they must 

aim for a standard of service based upon some probabilistic 

measure of reliability.  Failure to meet demand is called 

loss of load, and one of the most commonly used measures of 

reliability for system planning is called loss-of-load 

probability.  Stochastic factors also make the cost of 

meeting demand uncertain, so that the utilities must use 

some probabilistic measure of cost in optimizing their 

planning decisions. 

Historically, electric utility capacity planning has 

been based upon the twin criteria of generation mix and 

reserve margin.  Economic considerations of minimizing cost 

determine the generation mix to be used, and reliability 

considerations determine the reserve margin to be maintained. 

Often the relationships between cost and generation mix and 

between reliability and reserve margin have been known to 

utility planners only through experience and heuristic 

rules of thumb.  However, there has been considerable work 

done to develop more exact tools for utility capacity 

planning.  These tools include mathematical programming 

planning models and probabilistic methods for measuring 

the reliability of electricity supply. 
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Mathematical programming models have been in use for 

capacity planning by electric utilities for about twenty-five 

years.  An excellent survey of the models used and the 

extensive literature on the subject has been presented by 

Anderson [ 1 ].  Anderson distinguishes different kinds of 

models that are used at different stages of the planning 

process.  Initial candidate plans are developed with the 

help of global models which determine the optimal capacity 

expansion investments.  Then simulation models are used 

to determine the costs of operating each of the candidate 

systems.  Finally, various marginal substitutions can be 

made to improve a candidate plan. 

The global models used in the first stage contain 

within them less detailed versions of the simulation models, 

since in order to determine the cost of a capacity expansion 

plan, the operating cost must be determined.  Reliability 

standards are handled at this stage by making a priori 

estimates of the reserve margins required. 

More detailed simulation models are used in the second 

stage to provide more accurate estimates of the operating 

costs.  Probabilistic methods are also used at this stage 

to assess reliability." There is usually considerable 

iteration between the global and simulation models until 

a candidate plan has been found which is acceptable both 
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in cost and in reliability. 

Probabilistic methods for measuring the reliability 

of electricity generating systems have been in use by 

electric utilities for more than thirty years.  A brief 

history and bibliography can be found, for example, in 

Billinton [ 6,7 ].  Early work in this field was concerned 

with the methodology for calculating appropriate reliability 

measures and with their use for evaluating generating 

capacity reserve requirements.  A typical use of these 

methods has been to determine the timing of capacity 

additions to a system.  A reliability index is computed 

as a function of the system peak load, and when the load 

has grown to a point where the reliability is unacceptably 

low, the next unit on the capacity expansion schedule is 

added. 

There are two basic approaches to the measurement 

of utility system reliability.  The one which will be 

used in this thesis is the loss-of-load-probability method, 

mentioned above, which measures the expected amount of 

time during which the system will be unable to meet demand. 

The other is the frequency-and-duration-of-outage approach, 

which measures the expected time between loss of load 

incidents and the expected duration of these incidents. 
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One of the major developments in the application of 

probabilistic methods to capacity expansion planning v/as 

the invention of probabilistic sirmlation models by 

Baleriaux et al. {3] and Booth 19].  These models 

extend the loss of load probability method to compute 

not only reliability indices related to the loss of load 

probability but also the expected system operating costs 

when random plant outages can occur.  Furthermore, 

probabilistic simulation gives an efficient recursive 

technique for these calculations.  Using probabilistic 

simulation, it is possible to design mathematical pro- 

gramming models for planning generating capacity expansion, 

of the type discussed by Anderson, v/hich explicitly take 

into account reliability criteria based upon probabilistic 

measures.  The key to marrying cost minimizing capacity 

planning models to probabilistic reliability calculations 

is the use of mathematical programming decomposition 

techniques. 

A major theme of this thesis is that efficient 

methods for solving the capacity expansion planning 

problem can be created by using decomposition techniques 

to exploit its natural structure.  This structure arises 

from the inclusion of the problem of optimally operating 
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the generating system as a subproblen within the larger 

problem of planning capacity expansion.  In addition to 

their usefulness in designing efficient solution alaorithns, 

the decomposition techniques have two other advantages. 

First, they lend considerable insight into the underlying 

economics of the capacity planning problem.  Second, thev 

encourage the design of hierarchical models vith modular 

structure.  Such a structure in a model facilitates under- 

standing how it operates, validating it, and modifying and 

extending it to solve nev; problems. 

Procedures based on decomposition methods can 

efficiently solve the capacity expansion planning problem 

because they can take advantage of a special property of 

the problem - when the capacities of the plants to be 

built are fixed at trial values, the subproblem of mini- 

mizing the operating costs can be solved very simply. 

As will be shown in the following chapters, the operating 

subproblem can often be solved in essentially closed form - 

no mathematical programming algorithm is required.  From 

the solution of the operating problem, shadow prices on 

the trial plant capacities can be derived, representing 

the value of marginal changes in those capacities in 

changing the operating costs.  These shadow prices can 

be used to find improved trial capacities.  The trial 
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values are generated by solving a master problem, 

corresponding to determination of the optimal capacity 

investments, in which the shadow prices are used to 

modify the capacity costs of the plants.  An iterative 

scheme which alternates between solving the master problem 

for trial plant capacities and the subproblem for the 

shadow prices on these capacities can be used to converge 

to an optimal capacity expansion plan.  These decomposition 

procedures are broadly applicable to the capacity expansion 

planning problem, and in later chapters, it will be shown 

how they can be used in several different formulations of 

the problem. 

A second major theme of this thesis is the integration 

of mathematical programming models for capacity expansion 

planning with probabilistic measures of system reliability. 

This integration is accomplished by using probabilistic 

simulation as the operating subproblen of the capacity 

expansion model.  Shadow prices associated with the trial 

plant capacities in the probabilistic simulation can be 

computed and used in a decomposition algorithm to find 

the optimal capacity expansion plan.  The advantage of 

this integrated model is that a capacity expansion plan 

can be developed which meets explicit reliability standards, 

based on probabilistic measures, while rinir.izing expected 
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costs. 

A third major theme of this thesis is the integration 

of capacity expansion planning with peak-load' pricing 

of electricity.  Peak-load pricing is based on the economic 

concept that since the marginal cost of supplying electricity 

depends on the load, which varies by time of day, the price 

charged should also vary by time of day.  There has been a 

great deal of research concerned with the optimal pricing 

of electricity, largely separate from the research on 

capacity planning.  However, it has been widely noted that 

the pricing decision and the capacity planning decision 

are interrelated and must be made jointly.  Furthermore, 

since peak-load pricing is rapidly moving from theoretical 

consideration to actual implementation, there is a need 

to develop pricing models which can realistically capture 

the complexity of the capacity planning decisions. 

Decomposition techniques are natural tools for 

integrating the capacity planning decision with the pricing 

decision.  As will be shown, the decomposition models 

easily and naturally produce the marginal cost information 

that is required for the pricing decision.  A pricing model 

can be formulated in decomposition style by regarding the 

capacity planning model as a subproblem to compute the 

supply cost and  fomulating a master problan Lo conpute a 
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supply-demand equilibrium. V7hile much work remains in 

formulating practical peak-load pricing models, this 

paper will demonstrate how the decomposition approach 

can be useful in their formulation. 

This work is divided into three major parts.  The 

first part introduces three mathematical programming 

models for utility capacity expansion planning, based 

on decomposition techniques.  The second part discusses 

the technical details of the decomposition procedures for 

two of the models presented in the first part.  Finally, 

the third part discusses an application of decomposition 

techniques to the problem of computing peak-load prices. 

Part One begins with a general statement of the 

capacity expansion planning problem.  This problem is to 

find a capacity expansion plan which meets given, forecast 

demand for electricity over a horizon of twenty to thirty 

years at minimum cost, whic  ncludes both the capital 

costs of additional generating capacity and the costs of 

operating that capacity.  The following chapters present 

three specific models - a formulation based on linear 

programming, one based on nonlinear programming, and another 

using nonlinear programming which incorporates probabilistic 

simulation. 
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In Chapter 2, the capacity expansion planning 

problem is formulated as a linear program.  It is intended 

to demonstrate, using a simple linear model and ordinarv 

Benders' deconpoaition, techniques that will be generalized 

for use in the more complicated models presented in later 

chapters.  In the linear program formulation, Benders' 

decomposition is used to separate out the operating 

subproblems from the whole capacity planning model. 

These subproblems, which are themselves linear programs, 

can be solved analytically, without requiring the use of 

the simplex algorithm.  Given a trial capacity expansion 

plan, the duals of the subproblems can be solved for 

shadow prices, which show the narginal changes in operating 

cost caused by small changes in the trial plant capacities. 

These shadow prices are used in deriving the master problen 

to adjust the capacity cost coefficients.  The naster 

problem, also a linear program, is solved iteratively for 

the trial plant capacities.  Iterations continue, alter- 

nating between the master and subproblens, until an 
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optimal capacity plan has been found. 

In Chapter 3, the capacity expansion planning 

problem is reformulated as a nonlinenr program.  The non- 

linear formulation is smaller than the linear formulation, 

because it uses a more exact representation of the problem 

in place of the discrete approximation used in the linear 

formulation.  A technique called generalized Benders' 

decomposition is used to separate out the operating 

subproblems from the whole capacity expansion model.  The 

subproblems are nonlinear, but they can still be solved 

analytically, and the shadow prices can be derived by 

applying the Kuhn-Tucker optimality conditions.  The shadow 

prices are used in deriving the master problem, which turns 

out to be a linear program.  Thus, the nonlinear part of the 

problem is confined to the subproblems, where the solutions 

can be obtained very simply.  The explicit optimization 

occurs in the master problem, which is linear.  As before 

the solution algorithm proceeds iteratively/ alternately 

solving the master problem for a trial capacity plan and 

the subproblems for the shadow prices, until an optimal 

capacity plan has been found. 

Both the linear and nonlinear programming models 

discussed above consider a deterministic problem in which 

plants CTCJ   always available anc"' there is no uncertainty 
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about whether demand can be met.  In Chapter 4, the 

nonlinear programming formulation is extended to con- 

sider the case in v;hich plants can fail randomly, by 

including probabilistic simulation in the subproblems. 

In this case, it cannot be assured with certainty that 

demand will always be met, so it is necessary instead 

to specify a probable reliability with which demand will 

be met.  Using probabilistic simulation in the subproblems 

allows computation of the expected costs of operating a 

set of trial plants and of explicit probabilistic 

reliability measures.  The actual computation of the sub- 

problem solution is somewhat more involved than in the 

previous models; however, it still does not require the 

use of an explicit nonlinear optimization algorithm.  As 

before, the shadow prices on the trial plant capacities 

are derived from the optimality conditions for the sub- 

problems.  The operating subproblems are again separated 

from the capacity planning model using generalized Benders' 

decomposition, and the shadow prices are used to derive 

the master problem, which again is a linear program. 

Thus again, the difficult nonlinear, probabilistic part 

of the problem is confined to the subproblems, where it 

*d 
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can be solved very easily.  The explicit optimization is 

performed in the linear master program,  chapter 5 

presents the results of some computational experiments 

with the probabilistic capacity expansion planning model. 

The models discussed in Part One use a number of 

simplifying assumptions in order not to obscure their 

basic structure.  Only thermal, and not hydroelectric or 

other nonthermal, plants have been considered.  Capacity 

and operating costs have been represented as linear 

functions, and plants of any size can be built.  Plant 

locations, transmission costs, and environmental quality 

standards have not been considered.  Planned maintenance 

outages and use of spinning reserves and multiple-valve 

point plants have not been included.  Many of these 

assumptions can be relaxed without disrupting the structure 

of the problem, and the decomposition approach can still 

be used.  In Chapter 6 a number of extensions to the basic 

models are discussed which include these features. 

Part Two of this thesis discusses the more technical 

aspects of applying generalized Benders* decomposition 

to the two nonlinear programming models presented in the 

first part.  Parallel arguments are followed in Chapters 7 

and 8 in developing the decomposition for the deterministic 

^A 
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and probabilistic models, respectively.  First, the generalized 

Benders' master problem is derived, and the solution 

algorithm is described.  Then the solution of the subprob- 

lems and their optimal shadow prices are discussed.  This 

discussion also includes the convexity and duality properties 

of the subproblem, which are required to justify the deriva- 

tion of the master problem.  Finally, the special situations 

in which the subproblems are infeasible or degenerate are 

discussed.  Chapter 9 discusses some computational 

methods for the probabilistic simulation subproblem. 

While this problem has a fairly simple solution, the 

computational effort involved in calculatincr it could be 

substantial.  This chapter proposes a relatively efficient 

technique for the computation. 

Part Three of this thesis discusses the application 

of decomposition methods to the problem of determining 

peak-load prices for electricity.  If the demand for 

electricity is varied as a parameter in the problem, the 

capacity expansion models presented in Part One can be 

regarded as generating a cost function for supplying that 

electricity, both the cost and the expansion plan varving 

as demand varies.  This cost function can be embedded in a 

larger equilibrium problem in which demand is allowed to 
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vary as a function of price.  This equilibrium problen 

can be solved for both the prices for electricity and the 

capacity expansion plan.  The key to solving the equili- 

brium problem is to use the capacity expansion model to 

compute the marginal costs of supplying electricity. 

The approach used in this thesis differs from more 

traditional approaches to peak-load pricing in two 

respects.  First, it links the determination of peak-load 

prices to a long-range capacity expansion planning model 

by using this model to generate the supply cost function. 

Second, it uses the probabilistic version of the capacity 

planning model, presented in Chapter Four of the first 

part.  The marginal costs computed using this model differ 

somewhat from those used in more traditional treatments, 

since their time dependence is related to variations in the 

reliability of the supply rather than to the load level 

itself.  Thus the model can consider the effects of random 

plant failures and system reliability levels on prices. 

The third part begins with an introduction to the 

peak-load pricing problem and a brief discussion of some 

previous research. 

M 
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Chapter 10 discusses the use of the probabilistic 

capacity planning model to calculate the marginal 

costs of supplying electricity.  A method is presented 

for determining the contributions by components of 

demand at different times to the system marginal costs. 

This method is based on the probabilistic simulation 

recursive argument.  It is then shown how the marginal 

costs are related to the dual multipliers associated with 

the optimal capacity plan.  This relationship is discussed 

in more rigorous detail in Chapter 11. 

Finally, Chapter 12 discusses the use of these 

marginal costs in an equilibrium model for computing 

peak-load prices.  The equilibrium problem can be solved 

by a decomposition algorithm in which the capacity 

expansion model is used as a subproblem.  The master 

problem contains the price-sensitive demand model.  Trial 

values of the equilibrium demand are determined in 

the master problem and are passed to the capacity 

planning subproblem from which the marginal costs 

are calculated.  The marginal costs are passed back to the 
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master problem where they are used to compute a new trial 

demand estimate, and the process continues iteratively 

until an equilibrium has been found.  This chapter concludes 

with a discussion of some of the practical issues involved 

in implementing the peak-load pricing model. 

In a larger context, the models presented in this 

thesis demonstrate how decomposition techniques can be 

applied, in general, to economic planning models.  De- 

composition methods have several advantages which make 

them attractive for designing large economic models.  They 

permit modular design of these models, in which the models 

are structured as essentially independent modules which 

communicate with one another throudi well-defined interfaces. 

Apart from these interfaces, tine modules appear as "black 

boxes" to each other, in the sense that the internal 

structure of any module is of no concern to the other 

modules.  Modularity permits hierarchical, "top-down" design 

of models, allowing the details of model structure to be 

defined by successive refinement.  Furthermore, 

hierarchical, modular models are easier to understand and 

to verify, since a person need only consider the inter- 

actions of the modules at any level of the hierarchv and 

not   their  in  „rial workings.  Finally, modular models 
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are easier to maintain and to modify, since chances can 

be made internally to a module without affecting the other 

modules. A recent trend in computer software design has 

been to emphasize top-down modular design using structured 

programming.  Decomposition techniques extend these ideas 

to the mathematical structure of the model itself. 

Decomposition models also mirror the structure of 

decentralized economic systems.  They define interfaces 

between market sectors, or model modules, in terms of 

economic variables, prices and quantities of resources. 

Subject to these market indicators, each module acts to 

optimize its decisions.  The similarity between model 

structure and economic structure simplifies model design 

and lends insight into the structure of the economic system 

under study. 

In closing this Introduction, a word about notation. 

A great many indexed variables and constants appear in 

the following models.  In order to simplify the notation, 

like items will often be collected together in a vector, 

which will be designated by the same symbol, with an 

underscore to indicate the vector.  Thus Y is a vector 

consisting of the items Y1 where the index i runs 

from 1 to I.  Indices will be represented by small 
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letters; the upper limit of the range of an index will 

be represented by the same letter capitalized.  Many 

of the models presented have a time-staged structure, for 

which the same variables and constraints are replicated 

in each time period.  Time periods will generally be 

designated by the index t, but in showing the model for 

a generic period, which does not interact with the models 

in other periods, the index t will not be shown, but 

only implied, in the interest of clarity.  However, when 

the models for different periods are brouqht together, the 

index t will be used to distinguish them.  An index of 

notation is provided at the end of the thesis. 

Finally, a distinction should be made between the 

terms energy and power.  Power is the rate at which energy 

is delivered.  Thus power is an instantaneous quantity. 

In speaking of the load on an electric power system or 

of the capacity of a generating plant, instantaneous 

power is meant.  However, in speaking of operating cost, 

the cost of producing energy is usually intended. 
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Part One 

Mathematical Programming Models for 

Electric Utility Capacity Planning 

i*J 
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A.  Organization of Part One 

The purpose of Part One is to formulate three mathe- 

matical programmi ng models for utility capacity expansion 

planning using decomposition techniques.  The models are 

a linear programming formulation presented in Chapter 2, 

a nonlinear programming formulation presented in Chapter 3, 

and a nonlinear probabilistic formulation presented in 

Chapter 4.  The underlying idea of the decomposition 

approach used in all of these models is to separate the 

capacity planning problem into two parts - a master problem, 

which generates trial solutions for the optimal capacity 

expansion plan, and subproblcms, which determine the 

optimal operating scheme for each trial generating system. 

The attractive feature of the decomposition method is that 

when these subproblems have special structure which allows 

them to be solved easily, this property can be exploited 

in solving the larger problem in which c.hey  are embedded. 

The operating subproblems in each of the capacity expansion 

models presented here have such special structure. 

The presentations of the models in the following 

chapters all follow the same set of steps.  First, the 

problem of optimally operating a given set of generating 

plants is formulated as a mathematical program, and the 
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special structure of its solution is discussed.  It is 

shown how the Kuhn-Tucker optimality conditions of this 

problem can be used to derive shadow prices, which give 

the marginal changes in operating cost caused by small 

changes in the capacities of the plants.  Second, the 

problem of finding an optimal generating capacity ex- 

pansion plan is formulated as a mathematical program, 

with the operating problems embedded as subproblems. 

Third, it is shown how the decomposition approach can 

be used to develop a solution procedure for this problem. 

The decomposition principle is used to separate out the 

operating subproblems from the capacity planning model. 

The shadow prices are used to generate a master problem, 

which is another mathematical program that is solved 

for trial capacity expansion plans. 

The algorithm developed from the decomposition 

principle is an iterative one.  For each trial capacity 

expansion plan, the subproblems are solved to determine 

its optimal operating cost and the shadow prices on its 

plant capacities.  These shadow prices are used to derive 

a new constraint in the master problem, which can then be 

solved again for a new trial plan.  The procedure is con- 

tinued, alternating between the master and subproblems, 

until an optimal capacity expansion plan has been found. 
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« 
This part is organized so that successive models use 

generalizations of concepts presented in the preceding 

models.  The linear program presented in Chapter 2 is 

primarily intended to demonstrate the decomposition 

technique using a simple linear model and ordinary Benders' 

decomposition.  This model is reformulated as a nonlinear 

program in Chapter 3 and generalized Benders' decomposition 

is applied.  In Chapter 4, the nonlinear model is extended 

to the probabilistic case by using probabilistic simulation 

in the operating subproblems.  Chapter 5 presents some 

results of computational examples for this probabilistic 

model.  Finally, since the models presented in the preceding 

chapters have used some simplifying assumptions in order not 

to obscure their basic structure, some extensions of the 

basic models are presented in Chapter 6.  In many cases, 

the structure of the problem is not disrupted, and the 

decomposition procedures can still be used. 

The remainder of this introduction states the capacity 

expansion planning problem in general form and introduces 

some of the notation. 

-4J 
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B.  Definitions and Problem Statement 

This section presents a general statement of the 

problem to be discussed in the later chapters of Part One 

and introduces some of the concepts and definitions to be 

used. The problem to be considered is to find a minimum 

cost capacity expansion plan to meet forecast demands for 

electricity over a multi-year planning horizon, usually 

twenty to thirty years.  As has been emphasized in the 

introductory chapter, the cost to be minimized consists 

of two components - the initial capital cost for the 

generating plants to be built and the continuing cost of 

operating the generating system to meet customer demand. 

This problem is formulated mathematically below.  The 

formulation and notation generally follows that of 

Anderson [ 1]. 

Define the planning horizon as the time interval from 

0 to T.  Initially, any instant in this interval will be 

indicated by a continuous parameter,  x; however, later, 

it will be useful to regard the planning horizon as being 

made up of discrete periods (usually years or seasons) 

indexed by a discrete parameter t. 

Let X.  be the power output capacity of a plant 

in the system, where  j = 1,...,J denotes the type of plant 
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(nuclear, fossil-fueled steam, hydroelectric, gas turbine, 

etc.)* and v indicates the vintage, or year of commission- 

ing of the plant.  (Since the planning horizon begins at 

time 0, use of a negative v, -V <_ v <_ 0, will indicate 

an initially available plant, so that the capacity X. 

is given data, while a positive v, 0 < v < T, will indicate 

a plant yet to be built, so that X.   is a decision 

variable.)  Let C.  be the present value capital cost 

per unit of capacity of the plant  (j,v)  to be built. 

Let Y. (T)  be the instantaneous power output of the 

plant at time T, and let F. (T)  be the instantaneous cost 

of operation per unit of output, discounted to the present. 

In order to simplify notation, it will at times be 

convenient to consider the capacities X.  as elements 

of a vector X.  For this purpose, the indices  j  and v 

are considered combined into a single index, unique for 

each plant, for elements of the vector X.  Similarly, 

the Y. (T)  can be considered elements of a vector Y(x). 

Vectors and matrices of other data and variables will be 

introduced from time to time which are conformable with 

these vectors. 

Let Q(T)  be the instantaneous power demand, or load, 

on the system at time T.  It will often be convenient to 

-&i 
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work with a discrete approximation to this time profile 

of demand.  Period t is divided into discrete sub- 

intervals  s = 1,...,S, each of length  9   (typically  6 s s 

is one hour) during which the load is approximately constant 

at level Q. • ts 

The discounted operating costs of plant  (j,v)  over 

the interval T = 0 to T are given by 

/Vv(T)Yjv(x)dT, 

and the present value capital cost for the plant is given by 

C. X. . 
]V ]V 

The objective of the planning problem is to minimize total 

discounted cost of building and operating the generating 

system: 

J  T T J  T 
minimize 

3s 
Z       I  C. X  + /  E   E   F. (x)Y. (T)dT. 

j=l v=l  3V Jv  0 j=l v=-V ->v   •)V 

Using the discrete-time approximation given above, the 

integral can be replaced by a sum to give 

J  T T  S  J  t 
minimize   I       IC.X.+E   F   I       E  F. . Y  . 

j-1 v=l  3V DV  t-1 s=1 j=1 v=_v  3vts 3vts 

I 
+i 
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where Y. .   and F-:vts 
a*e the output and operating 

cost per unit output, respectively, approximated as constant 

during interval s of period t  (assume that operating 

costs do not change during period t,  so that 

Pjvts = Pjvt'V' 

There are several types of constraints on this 

optimization.  The first is that instantaneous power out- 

put of a plant cannot exceed its capacity. 

j • 1,.• •, J 

0 1 Yjv(T) - Xjv    v =-v"-"T 

T e (0,T) 

or in discrete time 

j = 1,...,J  v = -V,...,t 
0 < Y.    < X. 

t. ~~    1/ • » • ( 1    S ""~ 1/ • • • f D 

The second constraint is that instantaneous power demand 

must be satisfied 

J   T 
E  Z      Y. (T) >  Q(T)    T e (0,T) 

j-1 v=_v 3V 

or  in discrete time 

J t t—   J-,...,T 
Z       Z       Y-ivts  - Qts j»l v=-V     ^vts -    ts s  =   l,...,s 
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where Q   is the load during interval  s  of period  t, cs 

approximated as constant.  These two, the capacity con- 

straint and the demand constraint, are the basic constraints 

of the model. 

Additional constraints can be included as extensions 

to this basic model.  These extensions are discussed in 

more detail in Chapter 6, but a brief discussion is in 

order here.  One extension is the inclusion of hydroelectric 

plants.  The distinguishing characteristic of a hydroelectric 

plant is that the total amount of energy it can generate 

is limited by the amount of water stored behind the dam. 

Such an energy constraint has the form 

/ T 
Yhv(T)dT 1 Hhv(I> 

TEl 

where h is the plant-type index for hydroelectric plants, 

I is a time interval and H, (I)  is the amount of energy 

available to the plant in interval I.  Usually this interval 

is a season or some shorter time period.  In discrete form 

this constraint is 

£ Y. .  < H. . (I) 
sei hvts - hvt 

The amounts of hydro-energy H, t(I)  roay be given, or 
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they may be decision variables themselves, generating 

cost terms in the objective function.  More complex con- 

straints may be generated by including pumped-storage 

hydro facilities.  Also, constraints on polluting emissions 

from thermal electric plants may be cast in a form similar 

to the energy constraints on hydroelectric plants. 

Another extension of the basic model is to include 

additional constraints on the plant capacities,  X. . 

It is common to require the capacity variables to be 

integer-valued, to represent the discrete-sized blocks 

in which plants can be built and the discrete site alterna- 

tives on which to build them.  In addition, since electricity 

generating plants often exhibit economies of scale, the 

linear capital cost functions C. X.   could be replaced 
]V jv 

by concave cost functions represented piecewise-linearly, 

generating a mixed integer program with addition constraints. 

Finally, there may be constraints called "guarantee 

conditions," which limit the chance that demand will not 

be met due to plant failures and unexpected peaks in demand. 

Often these conditions are approximated by multiplying the 

capacity of each plant by its "availability factor," to 

reduce its effective capacity, and requiring that the 

effective system capacity exceed the expected peak demand 

by a specified reserve margin.  Such a constraint would 

^.J 
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J 
Z 

t 
Z 

j=l v=-v 
p. X.  > (l+m)Q. *}v 3V —      t 

where p.   is the availability of plant (j,v),  Q  is 

the expected peak load in period t, and m is the reserve 

margin.  However, a more realistic representation of 

reliability can be formulated using probabilistic methods. 

These will be discussed in detail in Chapter 4. 
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CHAPTER 2 

A LINEAR PROGRAMMING MODEL 

A.  Introduction 

This chapter discusses formulation of the generating 

capacity planning problem as a linear program.  The linear 

form allows the straightforward application of Benders' 

decomposition principle; decomposition of the nonlinear 

models of Chapters 3 and 4 is similar but somewhat more 

complicated.  The derivation of Benders' decomposition 

in this chapter, using linear programming decomposition, 

parallels the development of the more general decomposition 

techniques for these nonlinear models, discussed in Part 

Two.  Thus, this chapter provides a simple demonstration 

of techniques which will be used throughout this thesis. 

The steps used in this chapter to develop a procedure 

for solving the capacity expansion planning problem as 

a linear program are those outlined in the introduction 

to Part One.  In the next section, the problem of optimally 

operating a system of generating plants of given capacities 

is formulated as a linear program.  This program has a 

simple, analytic solution (at least in the case when all 

plants are thermal plants with linear operating costs) 

called merit-order operation.  Furthermore, the duality 

properties of this problem can be used to obtain shadow 

prices on the plant capacities.  In the following section, 
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the capacity expansion planning problem is formulated 

as a linear program, with the operating problems as sub- 

problems.  Then Benders' decomposition principle is 

applied to develop a solution procedure.  The subproblems 

are separated from the main problem, and a master problem 

is derived using the shadow prices generated by the sub- 

problems.  The master problem is a linear program which 

is solved iteratively for trial capacity expansion plans. 

The technical details of this development are presented i 

as a prelude to the technical development of algorithms 

for the nonlinear models in Part Two. 

Historically, linear programming was the first 

mathematical optimization procedure to be applied to 

the utility capacity expansion problem.  An excellent 

survey of the models used and of the extensive literature 

on the subject has been presented by Anderson .  Much 

of the early work on linear programming models was 

done at Electricity de France, presented by Masse1 and 
2 

Gibrat .  Another LP model has been developed by 

Fernandez and Manne .  More recently, the LP formulation 

has been extended to a mixed-integer programming formula- 

tion, which more realistically represents project in- 
4 

divisibilities and fixed costs, by Gately and by Noonan 

and Giglio .  The model of Noonan and Giglio is solved 
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by a Benders' decomposition-based algorithm, which is a 

standard method for mixed-integer programs. 

While Benders' decomposition has been applied 

before in solving these LP-based models, it apparently 

has not been used to exploit the special economic structure 

of the problem.  The model presented could be extended to 

include integer variables to represent plants of fixed 

block sizes and economies of scale, as is discussed in 

Chapter 6; however, the primary purpose of the model 

presented in this chapter is to demonstrate the techniques 

which will be extended to the nonlinear models in later 

chapters. 
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B.  Optimal Operation of the Generating System 

The basic problem stated in the introduction to 

Part One can be solved by linear programming; however, 

it can have a very large number of constraints and 

variables.  In particular, there is one variable for the 

operating level of each plant in each time interval, 

Y. . , and a corresponding capacity constraint, and 

there is one demand constraint for each interval s of 

period t in the planning horizon.  Thus, for realistic 

problems, the linear program can be quite large, and it 

has been found to be expensive to solve using standard 

computer algorithms .  However, the problem has a 

special structure, and efficient methods for solving the 

problem can be developed by using decomposition techniques 

to exploit this structure.  As has been noted above, the 

problem of minimizing the cost of supplying a given demand 

for electricity falls naturally into two components - 

finding a minimum-cost operating scheme for a given 

generating system and finding a generating system which 

has minimum total cost.  The former problem can be cast 

as a subproblem which can be used in solving the latter 

problem. 

Consider then, the subproblem of optimally 

operating a given set of generating plants in the 
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subinterval s of period t.  The problem is to 

J  t 
minimize  I Jt^  Fjvts.Yjvts (2.1) 

J  t 
subject to  E   E  Y.„.e > Q (2.2) 

j=l v=-V 3VCS   cs 

0£Yjvts<Xjv (2.3) 

The solution to this problem is very simple:  the plants 

are successively loaded up to their capacities, in order 

of increasing operating cost F-;v*.s' untü tne demand 

constraint (2.2) is satisfied. The last plant to be 

loaded, called the marginal plant, will generally not 

operate at full capacity. 

The ordering of the plants by increasing operating 

costs is called the economic loading order or merit order, 

Thus, the optimal solution to the operating problem 

(2.1) - (2.3) is called merit order operation.  It will 

be convenient to re-index the plants in merit order, and 

for this purpose, it is useful to define indicator 

constants which convert the (j,v) indices into merit 

order indices in period t. Note that the merit order 

may be different in each period, as new plants come 
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on-line, old plants wear out, and operating costs change. 

Define the indicator constant 6.   equal to one 

if the plant whose index is (j,v) is the i— plant of 

the merit order in period t and equal to zero other- 

wise.  These indicators are used to pick-out the plant 

which holds the i  position in the merit order.  Define 

j=l v=-V  3 J 
X — X , . • . , 1 

where I.  is the number of plants in the merit order 

in period t.  When the plant capacities are combined into 

a vector X, these indicators will be combined into a 

matrix 6.  which sorts X into merit order; thus 6.X 

gives a vector of plant capacities in merit order in 

period t. 

It is useful, before going on, to note some properties 

of the indicators 5. : 

3       t it 
i)  l      l      671 = I, 

j=l v=-V J 
only one plant can occupy 

the i  position in the merit 

order; 



46. 

ü)   E  «" = 1. if v < t, a given plant 

(j,v) can occupy only one 

position in the merit order; 

iii)  6.  • 0 for v > t,     a plant with vintage v > t 

has not been built yet and 

cannot appear in the merit 

order in period t; 

iv)  If F. .  is the operating cost of plant (j,v) in 

period t (and operating cost doesn't depend on the 

time interval s), define 

v) 

F it 
J  t 
E  E 

j=l v=-V *j^jvt 

Then Flfc < F2t < 

merit order. 

Define 

< F h* 
by definition of the 

Xifc = 
J  °   it E   E   6.X. 
j.l v=-V 3V Dv 

J  t   . 
+  E   Z  5.X. 

j=l v=l  ^v ^V 

where the first term consists of the capacities of 

existing plants, which are given data, and the second 

term consists of the capacities of plants to be built, 

which are decision variables. 
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Using the merit order notation, the operating sub- 

problem given above, (2.1) - (2.3), can be restated as 

minimize  E P^1 (2.4) 
i=l 

I 
E 

i=l 
subject to  E  Y1 > Q (2.5) 

0 < Y1 < X     i = !,...,! (2.6) 

There is one such subproblem for each interval s of each 

period t.  In order to simplify the notation, these time 

indices will be taken as implicit when there is no inter- 

dependence between different time intervals. 

Let ir be the dual multiplier, or shadow-price, 

associated with the demand constraint (2.5), and let X1 

be the multiplier associated with the capacity constraint 

in (2.6).  Then the dual problem is to 

maximize QTT -  E X1X1 (2.7) 
i=l 

subject to ir - X < F     i • !,...,! (2.8) 

ir >  0,   X1 > 0 (2.9) 
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The primal problem (2.4) - (2.6) is solved by in- 

spection/ as was noted above.  By the definition of the 

i   k merit order, if i < k then F < F .  Therefore, the 

optimal solution is obtained by setting Y1 • x1 suc- 

cessively in merit order until, the demand constraint (2.5) 

is satisfied.  The last plant loaded, the marginal plant, 

with index i = n, will generally not operate at full 

capacity.  The optimal solution is 

,  i < n 

n-1 
y1 « ^ Q - z    X1 ,  i = n 

i«l 

,  i > n. 

*       • 
By complementary slackness, since Y1 < X  for i ^ n, 

X • 0, i _> n. 

Furthermore, since Y1 > 0 for i < n, 

ir - X1 = V  i i < n. 

Hence, in particular 

TT • F 

and therefore 
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X1 = Fn - F1,     i < n. 

Consider the economic meaning of the dual solution. 

The shadow price IT on the demand constraint (2.5) is 

the marginal cost of increasing demand Q, which is just 

the cost of operating the marginal plant, the cheapest 

plant with slack capacity.  The shadow price  X1 on the 

capacity constraint (2.6) is the marginal benefit of 

increasing the capacity of plant i.  If the plant is 

operating at full capacity (i < n), then this benefit is 

just the difference between the cost of operating this 

plant and the marginal plant since adding capacity in 

this plant reduces the output needed from the marginal 

plant.  If the plant is not operating at full capacity 

(i _> n) i then increasing its capacity has no value . 

Thus, solving the primal subproblem is simply a 

matter of determining the marginal plant, which can be 

done by comparing the demand level with the capacities 

of the plants in merit order.  Then the dual solution can 

be obtained by a few simple computations.  The simplex 

algorithm is not required to solve the subproblems, and 

hence their solution is very efficient.  This property 

of the subproblems can be exploited to solve the entire 

capacity planning problem efficiently, through the use 

of a decomposition procedure.  The next section describes 

the use of Benders' decomposition principle. 
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C.  An Optimal Generating Capacity Expansion Model and Its 

Solution by Benders' Decomposition 

Consider the structure of the full capacity ex- 

pansion planning problem in linear program form.  For 

each interval s and period t, there is an operating 

subproblem (2.4) - (2.6), which can be written in the 

following matrix form 

i 

minimize F. Y „ (2.4) —ts—ys 

subject to e Y  _> Q (2.5) 

0 < Yfcs < 5tX (2.6) 

where Y   is the vector of plant output variables in 

interval s of period t, 

F.   is the corresponding vector of operating cs 

costs; 

e is a vector of ones; and 

6.X is the vector of plant capacities, 

sorted into the merit order of period t. 

Then the problem of finding the minimum cost capacity 

expansion plan can be written 
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T   S   , 
minimize C X +  E  E I' Y. (2.10) 

~ "  tPl s=l -ts_ts 

subject to e Y.c > Q      t - 1,...,T (2.11) 

0 < Y   < 6tX   s = 1,...,S (2.12) 

X > 0 (2.13) 

where C is the vector of plant capacity costs.  (For 

simplicity of notation, it has been assumed that all ele- 

ments of the vector of plant capacities are decision 

variables; however, existing plants with given capacities 

could easily be included in the formulation.)  Written 

out in full, this problem takes the form 

J  T T  S  Ifc its its • minimize   E   EC.X.  +  E   E   E F"BY"B        (2.10) 
j=l v=l  :v 3V  t=i s=i i=i 

subject to  E  Y  * > Q     t = 1,...,T  s=l,...,S   (2.11) 
i=l        ts 

its   J  t 
0 < Y <_     E   E   6.X.   t=l,...,T  s=l,...,S  (2.12) 

j=l v=-V  3V DV 

i=j.,.. •, I. 

X.  > 0 j = l,...,J  v=l,...,T   (2.13) 

The basic idea of Benders' decomposition is to 

divide the problem into the two parts mentioned above, 
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determining the optimal investments in generating capacity 

and determining the optimal operation of the generating 

system.  Given a trial set of plant capacities, the 

operating subproblems are solved to determine the optimal 

operation for the system in each period, and a set of 

shadow prices on the plant capacities are calculated 

from the dual subproblems.  These shadow prices are used 

to compute adjusted cost coefficients for the plant 

capacities, reflecting both their capital costs and their 

contribution to operating costs.  The adjusted cost 

coefficients are used to set up constraints in a master 

problem, a linear program which is solved to determine a 

new set of trial plant capacities.  These new trial 

capacities are inserted into the subproblems, and the 

solution procedure iterates in this fashion, alternating 

between the master and subproblems until the optimal 

solution is *'>und.  An important advantage of the de- 

composition approach is that it is often easier and 

more efficient to solve the master and subproblems 

separately than to try to solve the entire problem as a 

single linear program.  The special properties of the 

subproblems allow them to be solved easily, without using 

the simplex algorithm, and the master problem is generally 

a much smaller linear program than the original problem. 
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In addition, at each iteration both an upper and a lower 

bound on the cost of the optimal solution are available, 

so that the algorithm can be terminated prior to optima- 

lity with known error bounds. 

The following discussion demonstrates the derivation 

of Benders' decomposition for this problem.  It is pri- 

marily intended to illustrate the principle using a 

relatively simple linear model, in order to motivate the 

discussion of the more complex decomposition methods for 

the nonlinear models presented in later chapters.  A full 

discussion of Benders' decomposition principle is found 
g 

in Lasdon . 

The capacity planning problem (2.10) - (2.13) can 

be written in the form 

T  S , 
minimize {C'X + E  E minimum F._Y*«1 (2.14) 

X c  a t=l s=l Y. eT. „  ts ts — —ts ts 

where T.   is the set of all vectors Y   which satisfy 

constraints (2.5) and (2.6), in interval s of period t 

and fl is the set of all nonnegative vectors X such 

that the sets T.   are not empty.  That is, the inner 

minimization is just the operating subproblem (2.4) - (2.6) 

discussed above.  By the duality theorem of linear pro- 

gramming, the problem (2.14) is equivalent to 
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T  S 
minimize {C*X + I  I        maximum   {Q TT -X' 6.X}}  (2.15) 
x e a t-i s-1 (-ts,Ats)EAts 

where X.   is a vector of dual multipliers on the capacity 

constraint in (2.6), and A.   is the set of dual multiplier 

vectors  ^tg'Ats^  which satisfy the constraints (2.8) 

and (2.9) in interval s of t.  That is, the inner 

maximization is just the dual of the operating subproblem 

in interval s of t, (2.7) - (2.9). 

The set of feasible solutions to the dual subproblem 

A.   is a convex polyhedron which does not depend on the 

capacity vector X, and the maximum in (2.15) is achieved 

at an extreme point of this set, by a well-known theorem 

of linear programming.  Let k = 1,...,K index these 

k  k 
extreme points  ^tc'Vs'"  Then the problem (2.15) can 

be written 

T  S 
minimize {C'X + I      I      maximum {Q. ffJL-xf 5 X}}    (2.16) 
X e fl        t=l s=l k=l,...,K zs zs  t"" 

In order to insure that the primal subproblems have 

feasible solutions (that is, the sets T   are not empty) 

it is sufficient to require that enough capacity be built 

to meet the peak demand Q* in each period t.  This 

requirement takes the form of the constraints 

. 
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** it    . Z     Xxt > Q.     t = 1,...,T 

or in vector form 

e'5tX > Q*      t = 1,...,T 

where Q. = maximum Qts« 
S~~X t  * • • f o 

The set fi consists, at most, of capacity vectors 

satisfying these constraints.  Additional constraints 

on the capacities imposed in the original problem may 

also be included in defining ti. 

The capacity expansion planning problem can now 

be written from (2.16) in the following form 

minimize Z (2.17) 
Z,X 

T        S T        S 
subject to    Z  >   (C   -     S       Z     ^1BS.)X +    Z       Z    Q.   irj     (2.18) 

t=l s=l ~zs z t=l s=l ts ts 

e'6tX > Q*    t = 1,...,T (2.19) 

X > 0 

and any other constraints on X imposed in the original 

problem. 

. 
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This program is the master problem. 

The master problem is actually solved by suc- 

cessively generating the constraints (2.18).  Starting 

with an initial trial set of capacities X , the sub- 

problems (2.4) - (2.6) are solved for the dual mul- 

tipliers to generate the first (k=l) Benders' cut, as 

the constraints (2.18) are called.  In general, a 

relaxed master problem consisting of constraints (2.18) 

with k = 1,...,1-1    is solved for a new trial capacity 
o 

plan X .  The subproblems are then solved with these 
A   o 

capacities, and the associated shadow prices (^tg».**.-) 

are used to generate the next Benders' cut, with k - fc. 

Notice that these shadow prices are used in (2.18) to 

adjust the cost coefficients for the plant capacities. 

The new Benders' cut is, in a sense, the "most violated" 

of the constraints (2.18) not yet included in the master 

problem.  Since the current set of Benders' cuts in the 

relaxed master problem is a subset of the entire set 

of such constraints, the value Z  generated by solving 

the master problem at each iteratiion I    is a lower bound 

on the cost of the optimal solution.  However, if the 
0 0 

current trial values Z  and X  satisfy the newly 

generated Benders' cut (k=£), the current solution is, 

in fact, optimal.  If not, then the value of the new 
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o 
constraint with the current value X 

T  S   , T  S 
(C -  E   E  X* 6 >X* +  E   z  Q < 

t=l s=l ts t     t=l s=l ts ts 

is an upper bound on the cost of the optimal solution, 

since the constraints (2.19) guarantee that the trial 
o 

solution X  is feasible. 

Though the model presented in this chapter is con- 

cerned primarily with satisfying the demand and capacity 

constraints, (2.11) and (2.12), the Benders' algorithm 

is well-suited to treat extensions to this basic model 

which include additional constraints.  Additional con- 

straints on the capacity variables X can be incorporated 

into the master problem.  Even integer constraints on the 

capacities can be included, since Benders' decomposition 

is a standard method for solving mixed-integer programs. 

In this case, however, the master problem is no longer a 

linear program.  Additional constraints on the generator 

output variables Y   can be incorporated into the sub- 

problems.  Some types of these constraints are compatible 

with the special structure, so that the subproblems could 

still be solved without explicit use of a mathematical 

programming algorithm.  However, even if this is not the 
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case, the decomposition approach simplifies the solution 

of the entire problem by breaking it up into smaller 

pieces.  Further discussion of extensions of the basic 

model are found in Chapter 6. 
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CHAPTER 3 

A NONLINEAR PROGRAMMING MODEL FOR THE DETERMINISTIC CASE 

A.  Introduction 

In this chapter, the generating capacity planning 

problem is formulated as a nonlinear program.  The non- 

linear formulation offers two advantages over the linear 

formulation discussed in the previous chapter.  First, 

the nonlinear version is more compact than the linear 

formulation.  The large size of the linear program 

formulation is chiefly a result of using a discrete- 

time approximation to the load profile, Qt_.  Thus, there 

must be one operating subproblem for each subinterval s 

in period t.  The nonlinear formulation uses a continuous 

representation of the load in each period t, called a 

load duration curve, and uses explicitly the optimality 

of merit order operation in formulating a single sub- 

problem for each period t.  The subintervals  s used 

in the discrete-time approximation are not needed in the 

nonlinear formulation.  The second advantage is that the 

nonlinear formulation can be directly extended to the 

probabilistic case which will be discussed in Chapter 4. 

This extension is possible because there is a direct 

analogy between the nonlinear subproblems which will be 

formulated in this chapter and probabilistic simulation 
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which will be used in the next chapter. 

The development of a solution procedure for the 

nonlinear formulation in this chapter follows the general 

steps described in the introduction to Part One.  The 

next section discusses the formulation and solution of 

the operating subproblems.  The formulation uses ex- 

plicitly the fact that merit order operation is optimal, 

as shown in the preceding chapter, so that the solution 

is trivial.  However, the Kuhn-Tucker conditions of the 

problem can be used to obtain the shadow prices on the 

plant capacities, which is extremely useful information. 

In the following section, the capacity expansion problem 

is formulated as a mathematical program using the operating 

problems as subproblems.  The use of decomposition to solve 

this problem is described.  Since the problem is nonlinear, 

the generalized Benders' decomposition of Geoffrion 

must be used instead of the ordinary Benders' decompo- 

sition that was used for the linear model.  The technical 

details of applying generalized Benders' decomposition 

to this problem are discussed in Chapter 7. 

Historically, the nonlinear programming models for 

utility capacity expansion planning grew out of the 

linear models in an attempt to reduce the problem to 

computationally manageable size.  Work on such models 
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has been presented by a numoer of authors.  Phillips 

et al  have presented a nonlinear model which is similar 

in many respects to the model presented in this chapter. 

They have developed a solution procedure based on non- 

linear programming dual multipliers.  Another such model 

is described by Bessiere .  A third model, presented by 
4 

Beglari and Laughton , separates the problem into a 

capacity expansion planning linear program and operating 

subproblems, as is proposed in this chapter, but uses 

plant capacity factors, rather than shadow prices, to 

link the models together.  Apparently, the decomposition 

approach presented here has not been considered before. 
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B.  The Deterministic Operating Problem 

It was shown in the previous chapter that merit 

order operation is the optimal operating policy for a 

generating system (at least for one consisting of thermal 

plants).  This knowledge can be explicitly included in 

the model formulation, resulting in a significant re- 

duction in the size of the model.  However, this reduction 

comes at the cost of making the model a nonlinear program. 

In order to simplify the calculation of the operating 

cost, it is useful to summarize the time varying character- 

istics of the load during a given period of time by a 

load duration curve.  This curve represents a function 

G(Q)  which gives, for any level of load Q, the amount 

of time during which the load exceeds Q.  Using the 

discrete-time representation of the load introduced 

above, the construction of the load duration curve can 

be visualized as the rearrangement of the subintervals s 

of period t in order of decreasing load level Q  , as 

shown in Figure 3.1.  The load duration function G(Q) 

is therefore monotonically decreasing and is zero for 

all levels of the load greater than the peak load Q*. 

When plants are loaded in merit order, a given 

plant operates only when the load exceeds the combined 

capacity of all the plants below it in the merit order, 
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and then it operates either at capacity or at the level 

of excess, whichever is smaller.  Thus if plants are 

"stacked" under the load duration curve in merit order, 

the energy generated by each plant is given by the area 

it "cuts out" under the load duration curve (see Figure 3.2) 

More formally, define the cumulative capacity of 

all plants up to and including plant i as 

i 
U1 =  E  Xn   i • 1,...,I 

n=l 

or recursively, 

U1 - U1"1 = X1    i = !,...,! (3.1) 

where U = 0. 

The load level U    is called the loading point of 

plant i, since plant i begins generating when the load 

reaches u 

The amount of energy generated by the i— plant in 

the merit order in a given time period is 
« 

U1 

/   G(Q)dQ, 
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and the cost of operating this plant is thus 

F /   G(Q)dQ, 

where F1  is the operating cost per unit of energy pro- 

duced by plant i.  Therefore, the optimal cost of operating 

the generating system in a given period is 

I  . u1 
I  F1/   G(Q)dQ. (3.2) 

i-1  0i-l 

In order for this operating scheme to be feasible, the 

system must have sufficient capacity to meet the peak 

load; hence 

U1 > Q* (3.3) 

The problem of minimizing the operating cost (3.2) 

subject to the loading order constraints (3.1) and the 

peak load constraint (3.3) can be regarded as the operating 

subproblem in period t, analogously to the subproblems 

defined in the previous chapter: 

I   . U1 

minimize   I  F1/  G(Q)dQ (3.2) 
i-1  ^-1 
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subject to  Ux - U1"1 = X1  i = !,...,! 
(3.1) 

U1 > Q* (3.3) 

U1 > 0    i = 1, . . . ,1 

(Clearly, the load duration curve is defined for a given 

period t, and the merit order, peak load, and cost coeffi- 

cients all depend on t as well.  However, the index t 

has been suppressed here for clarity of notation.  It 

will be used below where needed.)  As before, the plant 

capacities  X1  are considered constants in the subproblera. 

Of course, optimization of these subproblems is 

trivial, because only one of two situations can occur. 

If the peak-load constraint (3.3) is satisfied, the 

loading order constraints (3.1) yield a single solution, 

which is optimal.  If the peak-load constraint is not 

satisfied, the subproblem is infeasible.  However, it is 

useful to regard this subproblem as an optimization in 

order to compute shadow prices on the plant capacities. 

The objective function (3.2) is separable, and it 

is convex on the feasible region defined by constraints 

(3.1) and (3.3), as will be shown in Chapter 7.  Thus 
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a necessary and sufficient condition for optimality in 

the subproblem is the existence of a set of dual multi- 

pliers satisfying the Kuhn-Tucker conditions.  Define 

A1 and TT as the dual multipliers, or shadow prices, 

on the i— loading order constraint (3.1) and on the 

peak-load constraint (3.3) respectively.  Because (3.1) 

are equality constraints,  X1  is unrestricted in sign 

while TT must be non-negative.  Assuming that the sub- 

problem is feasible and that U1 > 0 for all i, the 

Kuhn-Tucker conditions give the set of equations 

X1 - Xi+1 = (F1"*"1-?1) G(U*)    i = 1,...,I-1 

(3.4) 

X1 - TT   =0 

If, as will often be the case,  U > Q*, then TT = 0 

and the shadow prices  X1 can be determined by solving 

the set (3.4) by backward recursion.  (The cases when 

U s Q* or U1 • 0 for some  i are degenerate cases 

which are discussed in Chapter 7.)  The shadow price  X 

represents the marginal operating cost reduction resulting 

from an increase in the plant capacity X .  The shadow 

price IT represents the marginal cost of meeting additional 

peak demand Q*. 
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Thus, as was true for the linear programming sub- 

problem discussed in Chapter Two, this nonlinear operating 

subproblem can be solved very easily by determining the 

plant loading points U1.  Then the dual solution can be 

obtained by a simple computation.  It is not necessary to 

use a mathematical programming algorithm, and hence, the 

solution of the subproblems can be very efficient.  This 

special structure of the subproblems can be exploited in 

designing an efficient procedure to solve the entire 

capacity planning problem through the use of a decomposi- 

tion technique.  The next section discusses the application 

of generalized Benders' decomposition. 
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C.  The Capacity Expansion Planning Problem and Its 

Solution by Generalized Benders' Decomposition 

Consider the structure of the capacity expansion 

planning model using the nonlinear operating cost model. 

There is an operating subproblem, described in the pre- 

vious section, for each period t, which, in order to 

simplify notation, can be written in the following matrix 

form 

minimize F.(U,) (3.5) 

subject to MtUt = 6tK (3.6) 

Nt£t - Qt (3,7) 

St > ° 

where X is the vector of plant capacities X. , 

U. is the vector of plant loading points, 

U1 , in period t, and 

Q. is the peak load in period t. 

Then the objective function for the subproblem (3.2) in 

period t is given by the function F. (U.), the loading 

order constraints (3.1) are represented by the matrix M., 

the peak load constraint (3.3) is represented by the 
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vector Nt, and the matrix 5. sorts the vector of plant 

capacities into merit order, as described previously. 

The problem of finding a minimum cost capacity 

expansion plan can be written as 

minimize C'X + l    F.(U.) (3.8) 
_  t=l r -t 

subject to MtUfc = 6tX   t = 1,...,T (3.9) 

N
tMt > 

Qt (3'10) 

X > 0, U> 0 

where C is the vector of plant capacity costs.  (Again, 

for simplicity of notation, it has been assumed that all 

elements of the capacity vector X are decision variables; 

however, existing plants with given capacities could easily 

be included in the formulation.)  Written out in full, 

this problem takes the form 

J  T T *t   .. U1* 
minimize  S  E C. X.  + Z       I    F,1C/    G. (Q)dQ (3.8) 

j=l v=l  ->v •)V  t=l i=l   «i-l#t c 

J   T 
subject to UXt - u1"1'* =11  fi*V.  . .    •'#».» 

j=l v=l 3V 1V  i^""It (3,9) 

t=l,...,T 
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ü c  > Qt    t = 1,...,T (3.10) 

X.  > 0 uxt > 0 

Define \.     as a vector of dual multipliers 

associated with each set of loading order constraints 

(3.9) and IT.  as a dual multiplier associated with each 

peak-load constraint (3.10). Then the Kuhn-Tucker 

optimality conditions for the capacity planning problem 

(3.8) - (3.10) give the following conditions 

xit _ xi+l,t m   (Fi+l,t_Fit)Gt(uit}  ± . lt,,,tlt.X 

t - 1,...,T    (3.U) 
Itt X   ~ *t   = ° 

it V   * (assuming U  > 0 and U   > Qfc) 

and 

T  Jt 
C - I       I    XXt6j^ > 0 for all j,v (3.12) 
3V  t-1 i-1    DV " 

with equality if X^ > 0. 

it V (The degenerate cases when B** = 0 or U w • Qt are 

discussed in Chapter 7.) The equations (3.11) are just 

the equations (3.4) derived in the previous section. As 
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noted before, they can be easily solved by backward 

recursion for the shadow prices  X  .  These shadow 

prices are used in (3.12) to "price out" the capacity 

varaibles X, .  If the cost of building a plant exceeds 

the benefits derived from operating it ((3.12) holds with 

strict inequality) then the plant will not be built 

<Xjv=0). 

A solution procedure can be suggested along the 

lines of the Benders' decomposition of the previous 

Chapter 2.   Because of the nonlinear structure problem, 

the generalized Benders' decomposition of Geoffrion [17] 

must be used.  However, because the cost function and 

the constraints are separable in X.  and U  , it 

turns out that the master problem is a linear program. 

Though the subproblems are nonlinear, they are solved by 

inspection as discussed above.  The basic idea in deriving 

generalized Benders' decomposition is the same as that 

used in the derivation of ordinary Benders' decomposi- 

tion in the previous chapter, and the technical details 

are discussed in Chapter 7. 

The master problem, derived according to the discussion 

of Chapter 7, is 

•*"* 
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minimize Z (3.13) 

Z, X 
T 

subject to Z > C'X + E[F.(uj) + X*6.(Xk-X)]  k=l,...,K (3.14) 
tml  c v. t t 

£'6t2ilQt        t=l,...,T (3.15) 

X> 0 

and any additional constraints imposed on the X in the 

original problem. 

The index k refers to trial solutions of the master and 

subproblems generated at iteration k.  The constraints 

(3.15) insure feasibility in the subproblems. They can 

be written in component form as 

** it    . Z  XAt > Q.    t = 1,...,T (3.15) 
i=l    ~ C 

in which it can be seen that they require that sufficient 

capacity be built to meet the peak demand in each period t. 

As before, the master problem is solved by successively 

generating the constraints (3.14). .Starting with an initial 

trial set of capacities X , the subproblems (3.5) - (3.7) 

are solved for each period, and the shadow prices are 

calculated using (3.11) to generate the first (k=l) 

Benders* cut (3.15).  In general, a relaxed master problem 
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consisting of constraints (3.15) with k = 1,...,1-1    is 
o 

solved for a new trial capacity plan X .  The subproblems 

are then solved with these capacities, and the associated 

shadow prices  (^»At^  are used to generate the next 

Benders' cut, with k = I.     The algorithm proceeds itera- 

tively, alternating between the master problem and the 

subproblems until optimality is achieved.  Note that the 

use of the nonlinear functions G.(Q)  is confined to 

the subproblems where no explicit optimization is per- 

formed.  The subproblems can be regarded as "black boxes" 

which take the trial capacities X.   as inputs and 

produce the shadow prices  X   as outputs and which 

could be called as subroutines in the optimization algo- 

rithm.  The explicit optimization occurs in the master 

problem, which is a linear program. A detailed dis- 

cussion of the technical details of the solution algo- 

rithm using generalized Benders' decomposition is found 

in Chapter 7. 
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CHAPTER 4 

A MODEL FOR THE PROBABILISTIC CASE 

A.  Introduction 

This chapter discusses a formulation of the generating 

capacity expansion problem which explicitly considers re- 

liability standards defined by probabilistic measures. 

The model is an extension of the nonlinear program developed 

for the deterministic case in the previous chapter.  This 

extension is accomplished by using the technique of 

probabilistic simulation, which calculates the impact 

of random plant failures on operating costs and on ability 

to serve demand.  As will be shown, probabilistic simulation 

generates operating subproblems which are directly analogous 

to the subproblems of the deterministic model in the pre- 

vious chapter. 

The steps used to develop the probabilistic model 

in this chapter parallel those used to develop the models 

presented in the preceding two chapters. First, probabi- 

listic simulation is explained and used to set up the 

operating problem as a nonlinear program.  Expressions are 

derived for the expected system operating cost and for two 

probabilistic reliability measures, loss-of-load probability 

and expected unserved energy.  The suitability of each for 

defining reliability standards is compared.  Shadow prices 
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on the plant capacities are derived from the Kuhn-Tucker 

conditions for the subproblem.  Next, the capacity expansion 

planning problem is formulated as a mathematical program, 

with these operating problems incorporated as subproblems. 

Then generalized Benders' decomposition is applied to 

develop a solution procedure for this problem.  As before, 

the subproblem shadow prices are used to derive the master 

problem, which, in this case as before, is a linear program. 

The technical details of developing the solution procedure 

are found in Chapter 8; those of computing the shadow 

prices in Chapter 9.  The chapter closes with a discussion 

of an alternative treatment of reliability in the planning 

model using costs rather than constraints. 

Probabilistic methods have been in use for a long 
2 

time in evaluating power system reliability .  The 

development of probabilistic simulation by Baleriaux 

et al. and Booth marked a major advance by providing a 

relatively efficient method for computing widely used 

reliability measures and operating costs under probabi- 

listic conditions. An attempt to integrate probabilistic 

simulation into mathematical programming models for capacity 

expansion planning has been made in the Generation Expansion 
4 

Model (GEM) of Schweppe et al.   In this model, probabilis- 

tic simulation is used as an operating subproblem, and the 

capacity expansion model is a linear program.  Communication 
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between the subproblems and the linear program is achieved 

using plant capacity factors, rather than shadow prices, 

and convergence difficulties have been encountered.  A 

similar approach has been taken by Beglari and Laughton . 
O 

Telson used the GEM model in his study of the costs and 

benefits of changing electricity-supply reliability levels. 

The approach used in this chapter, using shadow prices 

to interface the probabilistic simulation subproblems with 

the mathematical program for capacity planning, has 

apparently not been used before.  This approach allows 

the rigorous development of solution algorithms based on 

decomposition theory for mathematical programs. 
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B.  Probabilistic Simulation and the Operating Problem 

Consider the effects of random plant failures, or 

outages, on the operation of the generating system.  A 

plant outage has two effects - first, it reduces the 

total amount of energy the plant produces over a given 

time period and second, it causes the plants above it in 

the merit order to produce more energy, at higher cost, 

in order to compensate.  In addition, it is possible that 

enough capacity will be down at some time that demand can- 

not be satisfied, a condition known as loss of load. 

The operation of a plant subject to random failures 

is often regarded as an alternating renewal process , which 

is a stochastic process consisting of alternating periods 

of operation and outage (see Figure 4.1).  The time spent 

in operation before a failure, m, and the time spent in 

repair before a return to service, r, are randomly drawn, 

independently from two different distributions, and each 

failure-repair cycle is independent of, but probabilistically 

identical to, the others.  In steady state, the probability 

of finding the plant in operation at an arbitrary moment is 

P = -JL 
m + r 

where the overbars indicate the means of the respective 
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A Typical History of Plant Operation 
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random variables.  This probability p is called the 

availability of the plant.  In the following discussion, 

its complement q = 1-p will also be used. 

Given that it operates, the load duration curve 

faced by the first plant in the merit order is just the 

system load duration curve,  G(Q).  Hence, the expected 

energy produced by this plant in a given time period is 

X1 

P, /  G(Q)dQ 
X 0 

where p,  is the availability of the first plant, and 

1 .  . X is its capacity. 

To derive an expresssion for the expected energy 

produced by the second plant in the merit order, an argu- 

ment in conditional probability is used.  The second plant 

faces two alternative situations depending on whether or 

not the first plant is operating.  Given that the first 

plant is operating, the second plant is loaded after the 

first and produces expected energy 

1  2 X +X 
P, /    G(Q)dQ. 

1 xx 

This situation occurs with probability p,.  Given that the 

first plant is not operating, the second "drops down" in 
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the merit order and produces expected energy 

,2 

2 

X 
P, /  G(Q)dQ. 

0 

This situation occurs with probability q, = 1-p,.  Thus, 

the expected energy produced by the second plant is 

12 2 X +X X 
P,(PT /    G(Q)dQ + q, /  G(Q)dQ) 

X1 ° 

or 

2 Xx+X . 
p2 /     (PjGtQJdQ + gjG(Q-XX)}dQ, 

where the term in brackets is the equivalent load duration 

curve faced by the second plant (see Figure 4.2). 

Using this same conditional probability argument 

for each successive plant, the equivalent load duration 

st curve for the I + 1— plant in the merit order is defined 

by 

Gi+1(Q) = PjG^Q) + q^fQ-X1)   i = 1,...,I        (4.1) 

where Gj^Q) s G(Q) . 

This recursive relationship is known as probabilistic 

simulation.  The expected energy delivered by the i— plant 
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1.  The first plant faces the system load duration curve. 

% Gto-X1) 

> 

1 * 1 
U Q +X      Q 

2.  If the first plant fails, the second plant faces the entire 
system load duration curve. This event has probability q-. 

vr Q a 
3.  If the first plant operates, the second plant faces only the 

load not served by the first. This event has probability p.. 

G2(Q) 

4.  The equivalent load duration curve faced by the second plant 
is the sum of these two curves weighted by their probabilities, 

Figure 4.2 
Derivation of the Equivalent Load Duration Curve 

(Adapted from Finger [13].) 
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in the merit order during the given time period is then 

U1 

P± /    G.(Q)dQ 

where, as before,  U  is the cumulative capacity defined 

by 

U1 - U1"1 = X1   i - 1, ...,I (4.2) 

with  U° - 0. 

The expected cost of operating the system during the given 

period is 

I   .    U1 

E  PXp. /   G.(Q)dQ. (4.3) 
i=l      „i-1 

Note the similarity of this expression to the corresponding 

cost expression in the deterministic case (3.2). 

Since each plant has a non-zero probability of failure, 

it is not possible to guarantee with certainty that demand 

will always be satisfied.  It is possible that enough plants 

will have failed at one time that the load will exceed the 

available capacity.  The 'ikelihood of this occur ing is 

often measured by the lc- -of load probability (LOLP), which 

is defined as the expected amount of time during which the 

v—- '- 
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load will exceed the available capacity during a given time 

period.  The LOLP is given by 

LOLP = GI+1(U
I) 

since the equivalent load duration curve G
I+1(Q)  repre- 

sents the load remaining to be served after all the plants 

have been loaded (see Figure 4.3).  This measure is called 

a "probability" because the load duration curve is often 

regarded as being analogous to a probability distribution 

for demand. 

The loss-of-load probability can be used as a relia- 

bility criterion for design.  Instead of the peak-load 

constraint  (3.3), which is no longer a useful standard, 

a reliability constraint of the following form is used: 

GI+1(U
X) < e (4.4) 

where e represents the desired reliability level (a 

typical design target is a LOLP of one day in ten years). 

It has been argued (see, for example, Telson ) that 

the loss-of-load probability is not an entirely satisfactory 

measure of reliability, since it takes account only of the 

likelihood that some load will not be met and not of the 
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size of the deficit.  For example, failure to meet the 

load by one kilowatt contributes as much to the LOLP as a 

failure of one megawatt, even though the latter failure 

would clearly have a more serious impact.  A more satis- 

factory measure would weight the probability of loss of 

load by the size of the outage.  Such a measure is provided 

by the expected unserved energy (sometimes known as the 

loss-of-energy probability) 

fGI+1(Q)dQ 
U 

which is the expected amount of energy demanded that the 

system fails to provide (see Figure 4.3). Although this 

index is not yet widely used in the industry, Telson has 

argued that it and related indices provide a "more satis- 

factory measure of reliability for the purpose of measuring 

reliability benefits." 

An additional reason for preferring the expected 

unservedenergy to the loss-of-load probability as a relia- 

bility measure in this mathematical programming model is 

that expected unserved energy is more tractable mathemati- 

cally. Because it has the same form as the terms of the 

operating cost function derived above (4.2), it is, in a 

certain sense, "compatible" with them.  This compatibility 



88. 

will be used in Chapters 8 and 9 in proving convexity 

properties for the problem and in computing shadow prices. 

VJhile LOLP (or other probabilistic reliability measures) 

could be used in this planning model, the expected unserved 

energy will be used here because of these two advantages 

it has over the LOLP. 

Thus a reliability constraint on expected unserved 

energy will be imposed 

CO 

/  GI+1(Q)dQ < E (4.5) 

U1 

where e represents the desired reliability standard. 

The problem of minimizing the expected operating cost 

subject to the reliability constraint is the operating 

subproblem in this probabilistic case, analogously to 

the deterministic operating subproblem discussed in the 

previous chapter.  In this probabilistic case, however, 

the structure of the problem is somewhat more complicated. 

Since minimum cost is achieved when the reliability con- 

straint is exactly satisfied, some of the plants may not 

be used at full capacity in the optimal solution.  Let 

Y  be the utilization level of the i  plant in the 

merit order, where 

0 < Yi   < X1. 



89. 

Usually this utilization level will be set equal to 

capacity.  However, if the system has excess capacity, 

more than is required to satisfy the reliability constraint, 

some of the more expensive plants high in the merit order 

may be shut down.  Their utilization levels would be 

set to zero. 

The operating subproblem for the probabilistic 

model can then be stated as 

I   .    U1 

minimize  I    Pp. /   G.(Q)dQ (4.6) 
i-1   ^i-1 * 

co 

subject to  / GI+1(Q)dQ < c (4.7) 

U1 

0 < Y1 < X1 (4.8) 

where the plant loading points are now defined by 

U1 - U1"1 - Y1    i « 1,...,I (4.9) 

with U° = 0 

and the equivalent load duration functions, written to 

show their d endence on If* explicitly, are 

Gi+l(Q;Yl"'*'vi) = P^fQ;*1,...^1"1) 

+ q<G. (Q-y1?y1f...,v
7-"1) i=i,...,i 
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with G, (Q) = G(Q).  (As before, thouqh the system load 

duration curve, operating cost coefficients, and merit 

order all depend on the period t, this index has been 

suppressed for clarity of notation.  It v/ill be introduced 

below, where needed.)  Again the plant capacities )' 

are considered constant data in the subproblems. 

The optimal solution to this subproblem is in- 

tuitively simple: Set Y1 = X1 successively in merit 

order until the unserved energy constraint (4.7) is 

exactly satisfied.  The last plant so loaded, the 

marginal plant, v/ill generally not have to be used to 

capacity.  The plants above the marginal plant will not 

be used. Let n be the merit order index of the marginal 

plant; then this solution can be written 

Y1 »= fx1 for i < n 

0  for i > n 

and Yn is set so that 

/ Gn+1(Q)dQ = e 

with 0 < Yn ^ Xn. Because of the simplicity of this 
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solution, an explicit nonlinear optimization algorithm 

is not needed to solve the subproblem, thus reducing 

the computation required to solve the problem.  (How- 

ever, calculation of the equivalent load duration curves 

can be computationally burdensome.) 

The subproblem also gives shadow price information 

on the plant capacities.  Define TT and A1 as the 

dual multipliers associated with the unserved energy 

constraint (4.7) and with the capacity constraint in 

(4.8), respectively.  These multipliers must be non- 

negative because the constraints are inequalities. 

Assuming that the subproblem is feasible and that the 

degenerate cases Xx • 0 or Yn = X11 do not arise, the 

Kuhn-Tucker condition for the problem give the followina 

expressions for these shadow prices 

X1 - - I     F3p. -4r /    G,(Q;Yi,...,Y:'*1)da 
j-1   3 3V1 oj-i 3 

00 

- * 3 / GI+1(Q;Y
1,...,YI)dQ for i < n 

3Y- „I 
(4.10) 

for i > n 

and IT = F". The multiplier ir is just the marginal 

cost of decreasing the unserved energy e, which, 



92. 

intuitively, is the cost of operating the marginal plant. 

The multipliers  A1 measure the benefit of increasina 

the capacity X1. 

Thus, as v/as true for the linear and nonlinear 

programming models discussed previously, the operating 

subproblems can be solved without using an explicit 

optimization algorithm.  The dual solution can be 

obtained from the Kuhn-Tucker conditions.  The compu- 

tational work involved in solving the subproblem arises 

from the probabilistic simulation recursion (4.1) and 

from computing the derivative terms in (4.10).  The 

use of probabilistic simulation in the subproblems can 

be integrated into a capacity planning model through 

the use of a decomposition principle.  The next section 

discusses the application of generalized Bendei 

de compos i tion. 
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C.  The Capacity Expansion Planning Model and Its Solution 

by Generalized Benders' Decomposition 

Consider the structure of the capacity expansion 

planning model in the probabilistic case.  There is an 

operating subproblem, described in the previous section, 

for each period t in the planning horizon, which can be 

written in the following vector form 

minimize EFt(Yfc) (4.11) 

subject to EGfc(Yt) < et (4.12) 

0 < Yt < 6tX (4.13) 

where, as before,  X is the vector of plant capacities 

Xjv' 

Y  is the vector of plant utilization levels, Y , in 

period t, and 

ct is the desired reliability level. 

Then the objective function (4.6) for the subproblem in 

period t is given by the function EF.(Yfc), the capa- 

city constraints (4.g) are represented by (4.13), 

• s 
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the expected unserved energy (4.7) is represented by the 

function EG.(Y.) , and the matrix 6. sorts the vector 

of plant capacities into merit order. 

The problem of finding a minimum cost capacity ex- 

pansion plan can be modeled as follows 

minimize C'X + E EP (Y ) (4.14) 
t=l  z    r 

subject to EGt(Yt) < e  t = 1,...,T (4.15) 

0 1 It - 6t£ (4.16) 

where C is the vector of plant capacity costs.  (As 

before« for simplicity of notation, it has been assumed 

that all elements of the vector X are decision variables.) 

Written out in full, this problem takes the form 

J  T T  Xt  tt   U
lt: 

minimize  E  E C. X.  + E  E Pp. /    G.. (Q)dQ (4.14) 
j=l v=i DV 3V  t=1 i=1  

pi ^_1/t it 

00 

subject to    / GT   .,   +.(Q)dQ  <  e. 
It,t    It+1't "    t 

(4.15) 

0  < YLt <     Z       E       6^X.„       t=l,...,T (4.16) 
- j=l v=-v    ^v Jv 
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The Kuhn-Tucker conditions for this problem define 

an optimal solution to the dual, as 

will be shown in chapter 8.  Define A.  as a vector 

of dual multipliers associated with the set of capa- 

city constraints in period t (4.16) and IT.  as the dual 

multiplier associated with the reliability constraint in 

period t (4.15).  Then, assuming the problem is not 

degenerate, as discussed in the previous section, the 

Kuhn-Tucker conditions for the capacity planning 

problem (4.14)-(4.16) give the following conditions 

it    3EG*    3EPY    i - 1    I kxz   + - — t = t    i-l,...,lt   (4#17) 
3Y      3Y      t-1 T 

where  n _ pnt 

and 

T   Zt      ,  • 
C.  - E  I  X «I* > 0 for all j,v (4.18) 
]V  t=l i=l    DV 

with equality if X.  > 0. 

The equations (4.17) are just the equations (4.10) 

derived in the previous section.  As noted before, they 

can be solved for the shadow prices 

X  •  These shadow prices are used in (4.18) to "price 

out" the capacity variables X..  If the cost of building 
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a plant exceeds the benefits derived from operating it 

((4.16) holds with strict inequality) then the plant will 

not be built  (X.  = 0). 

Just as generalized Benders' decomposition can be 

used to solve the deterministic capacity planning problem 

given in Chapter 3, so too it can be used to solve the 

probabilistic model given in this chapter. The technical 

details of applying the decomposition are given in 

Chapter 8.  The master problem in this case also turns 

out to be a linear program; the subproblems are nonliear, 

but they are solved using probabilistic simulation and an 

explicit optimization procedure is not required.  It turns 

out that  a major computational difficulty is to compute 

the derivatives which appear in (4.10). This difficulty 

arises because the equivalent load duration curves G.(Q) 

are defined recursively.  In Chapter 9, several alternative 

methods for computing the shadow prices are discussed. 

The generalized Benders' master problem, derived 

according to the discussion of Chapter 8 is 

minimize Z (4.19) 

Z,X 
T 

subject to  Z > C'X +  E [EFt(Y^)+A^6t(X
k-X)] (4.20) 

JC~" J. / • • • f f\ 

£  [EG. (Y.) + p*6. (Xk-X)J < I     c¥ (4.21) 
terk terk 

X > 0 
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As before, the index k refers to trial solutions of 

the master and subproblems generated at iteration k. 

The constraints (4.21) insure feasibility in the subprob- 

lems; they are generated when a trial solution X  does 

not satisfy the reliability constraint in the subproblem. 

The multipliers y.  are generated by the infeasible 

subproblems, and I\  is the set of indices t of the 

subproblems in which the k— trial solution is infeasible. 

Once again, the master problem is solved by successively 

generating the constraints (4.20) and (4.21).  Starting 

with an initial trial solution for the plant capacities X , 

the subproblems (4.6)-(4.8)  are solved for each period, 

to generate the first Benders' cuts (4.20) and (4.21). 

In general, a relaxed master problem consisting of con- 

straints (4.20) and (4.21) with k=l,...,i-l is solved 

for a new trial capacity plan X .  The subproblems are 

then solved with these capacities, and the associated 

shadow prices  X.  and u_.  are used to generate the 

next Benders' cuts with k • I.    The shadow prices X % 

are determined from (4.17).  If the trial solution X 

produces an infeasible subproblem in period t (that is, 

the reliability constraint (4.12) is viola  ), then 

the multipliers p.  are computed, using a rocedure 

similar to (4.17), as will be discussed in '.hapter 3. 
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The algorithm proceeds iteratively, alternating between 

the roaster problem and the subproblems until optimality 

is achieved.  Note that the use of the complex nonlinear 

functions G.(Q)  is confined to the subproblems where 

no explicit optimization is performed.  The subproblems 

isolate the probabilistic simulation from the optimization 

performed in the master problem.  But the optimization in 

the master problem is a linear program.  Thus, a difficult 

nonlinear, stochastic program can be solved as a sequence 

of linear programs by the use of decomposition. 
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D.  An Alternative Treatment of Reliability 

Some authors  , notably those discussing peak-load 

pricing, have taken an alternative approach to including 

reliability in capacity expansion planning models.  Rather 

than constrain the level of reliability, as in (4.4) or 

(4.5), they have preferred to charge a cost for loss of 

load.  This cost is representative of the economic and 

social costs of unserved demand and has sometimes been 

called a rationing cost.  The rationale for charging a 

cost rather than setting a target is that the reliability 

should be set at a level where the marginal cost of pro- 

viding additional reliability is just equal to the marginal 

rationing costs avoided by such an increase.  Since, in 

practice, the desired reliability standard e  is often 

set rather arbitrarily, the use of rationing costs provides 

a logical economic reason for determining it.  On the other 

hand, actual measurement and estimation of rationing costs 

is difficult (an important study on this subject has been made 

by Telson ), so that in actual applications, they may be 

no less arbitrary than direct estimates for reliability 

standards. 

There is an important dual relationship between the 

reliability level and t .e rationing cost in the following 

sense - for any level of reliability e, optimal solution 
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of the capacity expansion planning problem (4.11)-(4.13) 

determines shadow prices on the reliability constraints 

(4.13).  This shadow price represents the marginal cost 

of providing additional reliability and gives a ceiling 

on the value of the marginal rationing cost for which this 

level of reliability is adequate.  Parametric analysis 

could determine a relationship between e and the shadow 

price to provide a trade-off function for reliability 

level versus marginal cost. 

An equivalent alternative is to put a multiplier on 

constraint (4.13) and add it to the objective function 

(in effect, letting e be a decision variable). This 

multiplier represents the marginal rationing cost, and 

for any value, the capacity planning model will determine 

an optimal level of reliability.  The problem becomes, in 

a sense, a multi-criterion optimization, since the cost of 

supplying electricity and the level of reliability would 

now be optimized jointly. Again, parametric analysis could 

be used to determine a trade-off frontier between cost and 

reliability.  This approach may also have computational 

advantages, since it may be difficult to find trial solutions 

which satisfy the reliability constraints, at least in the 

early iterations of the algorithm. 
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Perhaps the essence of the rationing cost approach 

is the idea that reliability of service is an attribute 

of the demand for electricity and that as such it should 

be economically determined.  Since a substantial part 

of the rationing costs are borne by the buyers of electri- 

city, reliability should be set at a level for which the 

customers are willing to pay.  However, the capacity 

planning model discussed in this chapter is a supply 

model dealing only with the costs of supplying electricity. 

Therefore, it takes demand and its attributes as given. 

In Part Three of this thesis, this supply model will be 

embedded in a larger model in which demand for electricity 

varies with price.  In this larger model, the reliability 

standard can be regarded as price-dependent, linked to 

the supply model through a constraint of the (4.13), thus 

providing the economic rationale for these constraints. 

Hence, this integrated model resolves the two approaches 

into a single treatment.  This topic is discussed again 

in Part Three. 

-tf* 
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CHAPTER 5 

SOME COMPUTATIONAL RESULTS 

A.  Introduction 

This chapter discusses an implementation of the 

probabilistic capacity planning model, presented in the 

previous chapter, and presents the results of some ex- 

perimental runs.  The algorithm was implemented by 

modifying the MIT Generation Expansion Model (GEM) of 

Schweppe .  The major modifications required were the 

addition of a routine to calculate the shadow prices 

within the probabilistic simulation and the modification 

of the linear program to solve the generalized Benders' 

master problem.  Three test problems were run using data 

based (loosely) on the characteristics of a New England 

utility.  The results of these runs indicate that the 

algorithm can indeed produce a sequence of trial solutions 

which get successively closer to an optimal feasible 

solution.  However, the runs were not able to achieve 

feasibility within the allowed number of iterations, and 

there are indications that convergence of the algorithm 

may be show. 
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B.  Implementation 

The probabilistic  opacity planning model proposed 

in Chapter 4 was implemented for testing purposes by 

modifying the MIT Generation Expansion Model (GEM).  GZM 

is a detailed utility planning model intended for production 

(rather than research) use.  As such, it contains many 

facilities which have not been included in the models 

discussed in this thesis; however, it is similar in structure 

to the models discussed here. 

GEM consists of three major, integrated submodels. 

The plant evaluation model is used to determine feasible 

plant designs which meet the environmental quality standards 

set for various types of sites.  This model screens out 

unacceptable alternatives and evaluates plant performance 

characteristics for acceptable alternatives.  The plant 

expansion model determines a least cost capacity expansion 

plan, using linear programming.  The plant operation model 

determines the operating costs of the plants built by the 

plant expansion model, using probabilistic simulation. 

The relationship between the expansion model and the 

operation model in GEM is very similar to the relationship 

between the master problem and subproblems in the models 

• 
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presented in this thesis.  However, in GEM, the operation 

model is used to calculate a capacity factor for each plant, 

and this information is used to calculate operating costs 

in the expansion model. 

Because of its similarity to the probabilistic capacity 

planning model described here, GEM was chosen as the starting 

point for implementation.  Specifically, many of the routines 

and data structures required for implementing the model were 

already available in GEM.  Two major modifications were 
2 

required.  In the probabilistic simulation program SYSGEN , 

a routine to compute the subproblem shadow prices had to 

be added.  This routine uses the formulas derived in Chapter 9. 

In the linear program, a different type of matrix had to be 

generated, corresponding to the generalized Benders' master 

problem.  Also, the plant evaluation model was not used. 

The algorithm implemented for solving the subproblem 

is an earlier, slightly different version of the one 

discussed in Chapters 8 and 9; however, for the test 

problems run, this difference is believed to be unimportant. 

A flow chart showing the overall structure of the program 

is given in Figure 5.1. 

In order to test the routine which computes the shadow 

prices, a test problem was designed based on the Binomial 

M 
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distribution.  This distribution has the property that the 

convolution of two Binomial distributions with the same 

probability parameter is again a Binomial, and the order 

of this distribution is the sum of the orders of the two 

which were convolved.  The test problem used a cumulative 

Binomial distribution for the load duration curve, and all 

plants were of unit size with availability equal to the 

probability parameter of the distribution.  Thus, all of 

the equivalent load duration curves and the functions H. . 

(discussed in Chapter 9) should also have been Binomial. 

Therefore the answers given by the computation could be 

checked against a table of the Binomial distribution. 

This problem provided a convenient test case for debugging. 
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C.  Results of Test Runs 

Three test problems were run.  The data for these 

problems is summarized in Tables  5.1 and  5.2.  In all 

the problems, the same load duration curve was used in 

the first year of the planning horizon.  In subsequent 

years, this curve is scaled up by the growth rate specified 

for the problem.  In each year of the planning horizon, the 

model can build plants of three alternative types, the 

characteristics of which are given in Table  5.2.  Although 

the model can build plants of any size, the data are given 

for a standard size plant, listed in the table.  In addition 

to these new plants, there are five committed and existing 

plants, also listed in Table  5.2. 

The short planning horizons used tend to discriminate 

against high capital cost plants, since the full benefits 

of installing these plants cannot be recovered in a few 

years.  In order to compensate for this effect, it was 

assumed that the system configuration and load characteris- 

tics of the last year of the planning horizon would prevail 

in all subsequent years, forever.  Thus, each plant will 

be replicated at the end of its life, and all plants will 

operate in the same way as in the last year of the 

horizon throughout the infinite extension period.  The 
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TEST PROBLEMS 

A. Four year planning horizon without extension costs 

Load growth rate 40%/year (doubles in 2 years) 

B. Four year planning horizon with extension costs 

Load growth rate 40%/year (doubles in 2 years) 

C. Nine year planning horizon with extension costs 

Load growth rate 8%/year (doubles in 9 years) 

LOAD DATA 

For initial year of the planning horizon 

Peak Load - 2100 MW 

Energy Demand - 11,275,000 MWH 

Load Factor - 60% 

Unserved Energy Constraint _< 2.8% of Energy Demand 

(for all years) 

Discount Rate is 10.8% in all problems 

TABLE 5.1 

PROBLEM SUMMARY 
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discounted costs of replicating and operating plants 

throughout this period, called the extension costs, were 

included in two of the problems, B and C.  (The nine year 

horizon of Problem C is the longest permitted by the data arrays 

used in the program.) 

The results of these test runs are shown in Figures 5.2, 

5.3 and 5.4.  The graphs in these figures show how the 

linear program optimal value, which is a lower bound on 

the optimal cost, and the total unserved energy over the 

horizon, which is a measure of the degree of infeasibility 

of the current solution, vary with the iteration number. 

(Again,because of array size limitations, only nineteen or 

twenty iterations could be performed.)  As these figures 

indicate, the iteration procedure moved toward feasibility 

and optimality in all of the problems.  However, within 

the number of iterations allowed, the algorithm did not 

find an optimal or even a feasible solution.  Furthermore, 

the trial plant capacities generated at each iteration did 

not appear to stabilize but instead continued to change 

significantly from iteration to iteration. 

Because the trial solutions never attained feasibility, 

it was not possible to establish upper bounds on the optimal 

cost to compare with the lower bounds. Hence it is not 

possible to determine how close the algorithm came to 
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optimality.  The failure to attain feasibility is easy to 

explain.  First, the reliability constraint is a hard, 

nonlinear constraint so that finding feasible solutions 

is, not unexpectedly, difficult.  Second, the algorithm 

used to solve this problem uses outer approximations of 

the feasible region.  These outer approximations are 

polyhedral in shape and contain the feasible region.  It 

is to be expected that the linear program will always 

generate a solution which is an extreme point of this 

approximating polyhedron, which will always lie outside 

the feasible region. 

In order to try to find a feasible solution in 

Problem A, the unserved energy constraints were relaxed 

slightly after a number of feasibility constraints had 

already been generated.  In this relaxed version of the 

problem, the master problem was able to generate a feasible 

solution which satisfied the optimality conditions. 

However, because the master problem still contained 

feasibility constraints generated by the unrelaxed version, 

this solution is not necessarily optimal for the relaxed 

version of the problem.  Nevertheless, a more sophisticated 

version of this relaxation procedure, in which the feasibility 

constraints in the master problem are also relaxed, could 
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be used to find upper bounds for the optimal cost. 

In Problem A, which did not include the extension costs, 

the trial solutions consisted entirely of low capital cost 

peaking plants in the early iterations.  In later iterations, 

one intermediate plant began to show up.  On the other 

hand, in Problem B, the trial solutions consisted of 

intermediate plants in the early iterations and of inter- 

mediate and base plants in the later iterations.  No 

peaking plants were proposed.  In Problem C, the trial 

solutions consisted entirely of intermediate plants in 

all the iterations.  It is conjectured, however, that the 

master problem tends to avoid plants with higher capital 

costs until a number of Benders' cuts have been generated. 

The economy of the high capital cost plants is not expressed 

in the master problem until a good approximation to the cost 

function is obtained, and this requires a number of cost 

constraints to have been generated.  Since Problem C has 

more time periods, it is likely that more cuts were 

required before a good enough approximation was obtained. 

The algorithm also tended to generate trial plans 

with a small number of large plants in the early iterations, 

with more uniform distribution of capacity expansion over 

m 
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time showing up in later iterations.  In fact, in some 

test runs, the master problem proposed a plant that was 

too big for the probabilistic simulation routine to handle; 

a constraint limiting the size of the plants had to be 

added to the master problem.  The non-uniformity of all 

the early iterations is probably due to having a small 

number of constraints in the master problem, so that the 

approximation to the cost function is very non-uniform. 

The experience gained from these experimental runs 

tends to indicate that the generalized Benders' algorithm 

for this problem works reasonably, but that further 

improvements could be made with additional study.  Par- 

ticularly important is the need to generate upper bounds 

(and feasible solutions) in order to be able to measure 

the distance from optimality.  Further experiments, using 

larger data arrays, should also help to determine the 

convergence rate for the algorithm. 



120. 

CHAPTER 6 

EXTENSIONS 

A.  Introduction 

The modeln presented so fnr have used a number of 

simplifying assumptions, in order not to obscure their 

basic structure.  These assumptions include: 

i)  Only thermal pleints, and not hydroelectric or 

other non-thermal plants, have been considered. 

ii)  Capacity and operating costs have been represented 

as linear functions. 

iii)  Plants of any size can be built. 

iv)  Plant location and transmission costs have not 

been considered. 

v)  Environmental quality standards have not been 

considered. 

vi)  Multiple valve-point plants and use of spinnina 

reserves have not been considered. 

vii)  Maintenance planninq has not been included. 

Many of these features could be included in the models 

without disrupting their structure, and decomposition 
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methods can still be applied.  This chapter discusses 

briefly how some of these extensions could be handled. 

There are two basic types of modifications that can 

be made to the models which preserve their structure - 

those which affect the capacity variables, and therefore 

become part of the master problem, and those which 

affect the operating variables, and therefore become part 

of the subproblem.  Furthermore, since the decomposition 

approach derives much of its utility from the fact that 

special algorithms can he used to solve both the subproblem 

and the master problem, the modifications should either 

be compatible with these special algorithms or have 

special algorithms of their own.  The special algorithms 

for the subproblem all depend on the optimality of merit 

order operation.  The special algoritlim for the master 

problem is linear programming. 

The following sections each discuss a different 

type of extension. 
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B.  Hydroelectric Plants 

The difference between hydroelectric plants and 

thermal plants is that the total energy qenerated by a 

hydro plant is United by the amount of water stored 

behind the dan.  Thus, the simplest nodel of hydro- 

electric plants includes a constraint of the form 

(eI 
Yhv(T)dT ± Hhv(I) 

where h is the plant-type index for hydro plants,  I 

is a tine interval, and II. (I)  is the amount of energy 

available to the plant durinq interval I.  Usually this 

interval is a season or sone shorter time period. 

A special methodology for placing hydroelectric 

plants in the merit order has been developed by Jacoby 

and extended by others.  Generally, hydro plants have 

negligible operating costs, so it would be desirable to 

place them at the bottom of the loadinq order.  However, 

it is generally not possible to do so since they would 

be required to generate more energy than they have 

available.  Jacoby*s rule states that a hydroelectric 

plant of capacity X.   and with given stored energy 

Hhvt snoul<5 De placed in the merit order so that the 

total energy generated (the area cut out of the load 
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duration curve) is exactly equal to the stored energy 

(see Figure 6.1).  Then nerit order operation in still 

the optimal policy, and solution of the subproblen 

proceeds as before. 

This rule has been extended to loading hydro plants 
2 

in probabilistic simulation by Joy and Jenkins  and 
3 

Finger .  Finger also considers loading of pumped-storage 

hydro plants.  Thus, hydro and even pumped hydro plants 

can be considered within the subproblems already defined. 

In order to calculate shadow prices for these plants 

(shadow prices will appear not only for power capacity, 

as with thermal plants, but also for energy capacity), 

it is necessary to add the proper constraints to the 

subproblem which characterize the optimal loading posi- 

tion of these plants. 

Thermal plants under air quality constraints can 

also be modelled like hydro plants, if the air quality 

standard constrains total emissions.  The constraint 

then has the same form as an energy constraint, since 

emissions are proportional to total fuel burned.  The 

loading of these plants is complicated by the fact that 

their operating costs are non-negligable, but the effect 

of the emissions constraint is to push the plant hiqher 
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in the loading order, if the constraint cannot be 

satisfied at its normal position (based on operatino cost 

alone). 

Benders' decomposition can also handle the situation 

when the hydro energy stored in each period is a decision 

variable.  In this case, the H .  variables are included 

as decision variables in the master problem and passed 

as data to the subproblem along with the plant capacities. 

Additional constraints are included in the master problem, 

of the form 

Sv,t-1 +Wvt - Svt + Hvt    vs 1""'t 

t « 1,...,T 

where S   is the amount of water stored behind the dam vt 

at the end of period >., and W .  is the water inflow during 

period t (given data).  There will be an imputed benefit 

associated with H ., measured by its shadow price in the 

subproblem for period t, and the model will distribute 

the hydro energy available among the different periods 

in order to optimize these benefits. 
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C.  Nonlinear Capacity Costs and Fixed-Size Plants 

The models discussed previously have assumed that 

the cost of building a plant is proportional to its 

capacity.  However, real generating plants exhibit 

economies of scale: the cost per kilowatt decreases as 

the plant size increases.  Furthermore, plants are usually 

built in fixed unit sizes because components such as 

generators are manufactured that way.  In order to deal 

with these features, integer variables can be intro- 

duced into the master problem. 

Cost functions which exhibit economies of scale are 

nonlinear and concave.  They can be approximated piecewise 

linearly; however, when such an approximation is used in 

a cost-minimizing optimization problem, an integer variable 

must be associated with each segment of the approximation 

to insure that the segments are used in proper order. 

Thus the problem becomes a mixed integer program. When 

fixed-size plants are included in the model, a binary 

decision variable is associated with each alternative plant 

size to indicate whether that particular size is chosen. 

Integer variables present no additional problems to 

the decomposition approach; in fact, Benders' decomposition 
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is a standard tool for solving mixed inteacr proarans. 

The decomposition is used to separate the intener part 

of the problen, which becomes the master problem, from 

the linear part, which becomes the subproblem. With 

proper design, the operating r.ubproblems v/ill remain 

unchanged.  The master problem will become an integer 

program which can be solved by the standard cutting 

plane or branch-and-bound techniques.  (The paper by 
4 

Noonan and Giglio in fact, applies Benders' decomposition 

to solve a mixed integer capacity planning model). 

The use of a concave capacity cost function in 

the probabilistic capacity planning model should lead 

to some interesting results.  The economies of scale 

should tend to favor large plants; however, there is a 

diseconomy of reliability in large plants.  Since fewer 

large plants will be built, there will be less diversi- 

fication and lower reliability (this occurs even when 

expected unserved energy is used to measure reliability). 

It will be interesting to determine the plant size at which 

the economy of scale in building large plants just 

balances the diseconomy of reliability. 

In Part Three of this thesis, the capacity planning 

model v/ill be used to calculate marginal costs for 

_ 
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peak-load pricing.  It should be noted that calculation 

of such marginal costs in a model v/hich usns concave 

cost functions or integer variables is verv nuch pore 

difficult than in a linear or convex model.  This area 

deserves further investigation. 

Finally, it should be noted that integer variables 

can also be used for other purposes in this model.  An 

important use is to model available siting alternatives. 

Once a site has been used, it cannot be used again. 

Furthermore, there may be restrictions on the type of 

plants which can be built on a given site.  These 

additional constraints can be modeled using integer 

variables. 
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D.  Multi-Valve-Point Plants and Spinnina Reserves 

The operating range of a generating plant actually 

consists of a set of intervals betv/een valva points. 

Often operating costs are different in different inter- 

vals and sometimes different intervals can fail inde- 

pendently.  Hence a multiple valve point representation 

can be used to model nonlinear operating costs and 

probability distributions for available capacity more 

complicated than the two point distribution used previously, 

in Chapter 4. 

When plants' operating ranges are represented in this 

way, the valve points of a given plant may occupy different, 

non-adjacent positions in the merit order, and thus the 

merit order operating scheme may no longer be optimal 

(an upper valve point cannot be operated unless the lov/er 

valve points are already in operation).  Furthermore, 

merit order operation may be violated in order to provide 

for a spinning reserve (plants kept operating at a low 

level in order to allow rapid response to increases in 

load or to failures of other plants).  Thus, in these 

models, solving the subproblems becomes less straight- 

forward. 

The operating subproblems in models which include 
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multi-valve-point plants and spinning reserve require- 

ments have implicit precedence constraints which nay 

require certain plant segments to operate before others. 

These precedence constraints give the operating problem 

a combinatorial aspect.  Because of the discrete nature 

of these constraints, it may not be possible to define 

shadow prices for them, and that disrupts the relation- 

ship between the master and subproblems. 

However, work is progressing on operating models 

which include multiple valve point plants and precedence 

constraints, particularly on incorporatinn them into 

probabilistic simulation.  Hence, it is likely that 

these features will eventually be usable in capacity 

planning models. 
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E.  Maintenance Scheduling 

The probabilistic model presented in Chapter 4 deals 

with unplanned, or forced, outages of plants.  However, 

much maintenance is performed during planned outages,and 

it would be useful if the capacity planning model could 

schedule these outages to minimize the added costs. 

This feature can be added to the model by dividina each 

year of the planning horizon into several maintenance 

periods.  In the master problem, integer variables are 

used to indicate which plants will be assigned to mainte- 

nance during each such period.  These plants will not be 

presented to the subproblem for that period, but the sub- 

problems remain unchanged except that there must be one 

subproblem for each maintenance period.  Again, the 

Benders' decomposition approach can be used to solve 

this problem as a mixed integer program. 

Some thought must be given to logicallv defining 

maintenance periods.  The definition should separate high 

demand periods from low, since maintenance is generally 

performed in low demand periods, while all capacity that 

can be made available is used during high demand periods. 
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F.  Demand Uncertainty 

The model proposed in Chapter 4 considers the un- 

certain aspects of supplying electricity, tho random failure 

of plants. However, the denand for electricity is also 

uncertain, and the impact of this uncertainty is at least 

as great as that of the supply uncertainty on  planning. 

There are two types of uncertainty in demand, long-term 

and short-term.  The long-term uncertainty is primarily 

concerned with the gross parameters of demand, such as 

yearly peak, yearly energy, and load factor, several years 

ahead.  The short-term uncertainty is primarily concerned 

with the fine variations which will occur hourly or daily over 

the next year or so.  Of course, both types of uncertainty 

are really different aspects of the same thing, but 

different methods can be used to deal with then. 

For planning purposes, long-term uncertainty can be 

dealt with by considering alternative scenarios.  Usually, 

a small number of scenarios will be sufficient to 

represent the bounds of the expected variation in long-term 

forecasts.  For each scenario, a demand forecast is 

developed, and a capacity planning study is done based 

on that forecast.  Then, based on the likelihood of each 
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scenario occurring, one or a combination of the capacitv 

plans is chosen.  This choice procedure could be formalized 

as a decision analysis problem. 

In order to deal v;ith short-term uncertainty, it is 

necessary to find a way to represent the short-term 

random characteristics of the demand profile.  To a 

certain extent, the load duration curve already represents 

some of these characteristics; however, though it is often 

used as one, the load duration curve is not exactly a 

probability distribution.  Thus, it v/ould be useful to 

be able to include the random characteristics of demand 

within the load duration curve.  Steps in this direction 

have been taken by Vardi, et al. , and others.  Another 

approach, not using the load duration curve, is taken by 

Crew and Kleindorfer .  However, additional research is 

needed. 

' 
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Part Two 

Technical Issues 
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A.  Organization of Part Two 

The purpose of Part Two is to rigorously derive pro- 

cedures for solving the two nonlinear programming models, 

presented in Chapters 3 and 4.  The algorithm for the 

deterministic model is discussed in Chapter 7, that for 

the probabilistic model in Chapter 8.  Some computational 

aspects of the probabilistic model are discussed in 

Chapter 9.  The algorithm proposed for both models is the 

generalized Benders' decomposition of Geoffrion [17]. 

This algorithm proceeds by alternately solving a master 

problem to determine a trial soltuion for the optimal 

capacity expansion plan and then a set of subproblems 

to determine the cost of operating this trial system in 

the different years of the planning horizon.  The shadow 

prices determined in these subproblems are used to generate 

new constraints in the master problem, which is then re- 

solved to determine a new trial soltuion.  One of the 

constraints generated approximates the nonlinear operating 

cost function; the other approximates the feasible region 

of the problem. 

In both the deterministic and probabilistic versions 

of the model, presented in Part One, the subproblems have 

special structure which makes solving them fairly easy. 
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Application of the decomposition principle permits this 

\ special structure to be exploited in solving the larger 

capacity planning problems.  Relatively simple computa- 

tional procedures based on these special structures can 

be used to find optimal solutions and dual multipliers 

for the subproblems, which are used to generate the cost 

and feasibility constraints in the master problem. 

The presentations of the algorithms in the following 

chapters both follow the same general steps, which are 

based on the arguments of Geoffrion.  First, the generalized 

Benders' master problem is derived.  Second, the optimal 

solution of the subproblem and the derivation of its dual 

multipliers are discussed.  Also included are discussions 

of the convexity and duality properties of the subproblems, 

which justify the derivation of the master problem.  Third, 

the situation when the subproblem is infeasible is discussed 

and dual multipliers for this situation are derived. 

Finally, the situation when the solution of the subproblem 

is degenerate is discussed. 

These technical issues are presented in Chapter 7 for 

the deterministic problem and in Chapter 8 for the probabi- 

listic model.  Since the technical discussion for the proba- 

bilistic model is somewhat more involved, the deterministic 
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model is presented first, in order to provide a simpler 

demonstration of the arguments.  Chapter 9, the final 

chapter of this part, discusses the computational aspects 

of solving the subproblems in the probabilistic model. 

The remainder of this introduction states some key 

results from the duality theory of nonlinear programs, 

which will be used extensively in the derivations of the 
1 

following chapters. 

\ 

M 
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B.  Results from Duality Theory 

The derivations in the following chapters rely on 

certain results from the duality theory of nonlinear pro- 

grams.  These results are summarized below; the proofs may 

be found in Lasdon [23]. 

A general nonlinear program can be stated as 

minimize f (x) 

subject to gj(x) £ 0   i • 1 ,...,& 

g.(x) = 0   i = £+l,...,m 

x e S 

where x is an n-dimensional vector,  S is a subset of 

R  and f and g.  are real-valued functions defined on 

S.  This problem is known as the primal problem.  The 

Lagrangian function associated with this primal problem is 

m 
L(x, X) = f(x) + Z     X.g. (x) 

i=l  x 1 

with  X. >^ 0  for i = 1,... ,%.     The Lagrangian dual of 

the nonlinear program stated is to 

maximize L (A.) 

subject to \^  > 0  for i = I,... ,9. 
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where L(M = minimum L(x,M 

subject to x e S 

Theorem 1:  Kuhn-Tucker Conditions 

Suppose S = R .  If x*  is a local minimum in the 

nonlinear program, the functions  f  and g.  are differ- 

entiate, and the problem satisfies a constraint qualifi- 

cation, then there exist multipliers \*    such that 

i)  Stationärity:  V L(x*,X*) = 0 

ii)  Complementary Slackness:  A.g. (x*) =0 i = 1,...,£|| 

The Kuhn-Tucker conditons give necessary, but not sufficient, 

conditions for optimality.  There are a number of alterna- 

tive constraint qualifications which guarantee the theorem. 

For purposes of this discussion either of two suffices: 

i)  All the constraint functions g,  are linear, or 

ii)  All the constraint functions g.  are convex and 

there exists an x such that g.(x) < 0  i = l,...,fc. 

Sufficient conditions for optimality are provided by 

Theorem 2:  Global Optimality Conditions 

* 
If there exist x* e S and X*  (with X. :> 0 for 

i = !,...,£)  such that 
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i)  Minimality:  x* minimizes L(x,^*)  over S 

ii)  Feasibility:  9i(x*) 5 0   i = 1,...,£ 

g. (x*) = 0  i = Jt+1,... ,m 

* 
iii)  Complementary Slackness:  X.g.(x*) = 0, i=l,...,Ä 

then x* is optimal in the primal and X* is optimal 

in the dual. || 

Theorem 3:  Strong Duality 

The points x* and X* satisfy the global optimality 

conditions if and only if x* is feasible in the primal, 

X* is feasible in the dual and f(x*) = L(_X*). || 

It is not true, however, that if x* and X* are optimal 

in their respective problems then 

f(x*) = L(X*). 

There can arise situations, called duality gaps, in which 

f (x*) > L(X*) . 

The global optimality conditions are sufficient, but not 

necessary, for optimality.  If, however,  f and g.  are 

differentiable and convex (affine, for i = Ä+1,...,m), the 

global optimality conditions are equivalent to the 

mmm 
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Kuhn-Tucker conditions, and are both necessary and suffi- 

cient. 

In general, differential stationarity conditions, 

such as (i) of the Kuhn-Tucker conditions, are only 

necessary for local optimality.  With convexity, however, 

they are sufficient to guarantee global optimality be- 

cause a stationary point of a convex function is a global 

minimum. 

M 
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CHAPTER 7 

SOME TECHNICAL ISSUES ASSOCIATED WITH 

THE DETERMINISTIC MODEL 

A.  Derivation of the Master Problem 

Recall that the deterministic capacity expansion 

planning model is stated in Chapter 3 as follows 

minimize   C'X + E F. (U.) (7.1) 
t=l z    c 

_'_l ' • • • '—n< 

subject to    MtUfc = 6tX (7.2) 

NtUt > Q; (7.3) 

X > o  ut > 0 

where X is the vector of plant capacities to be built, 

and C is the vector of plant capital costs per unit of 

capacity. The matrix 6. selects the capacities of the 

plants available in period t and arranges them in merit 

order.  The vector U.  represents the plant loading 
* 

points in period t, and Q.  is the peak load in that 

period. 

Associated with this capacity planning problem, there 
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is a set of operating subproblems, one for each time 

period in the planning horizon.  They have the form 

I   . UX 

minimize  I  F1/  G(Q)dQ (7.4) 

1     I i=1  Ui_1 U , ...,U 

subject to  U1 - U1"1 = X1   i = 1,...,: (7.5) 

U1 > Q* (7.6) 

U1 > 0 

(the index t indicating the time period has been sup- 

i-1 pressed for clarity).  Here,  U    is the loading point 

for the i— plant, the cumulative capacity of all the 

plants below it in the merit order (U = 0).  The load 

duration function,  G(Q), shows the length of time, during 

the period, during which the load exceeds level Q.  The 

cost of operating plant i per unit of energy produced 

is represented by F , and the indexing scheme, the merit 

order, is designed so that F1 <  F  .  The capacity X 

of the i  plant is considered given data in the operating 

subproblems. 

These operating subproblems are included as parts of 

,i capacity planning problem.  The plant loading points Ü 

in the subproblem for period t form the vector U.  in the 
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capacity planning problem, the objective function (7.4) 

is F4-(U.) ' tlle losing order constraints (7.5) are 

represented by the matrix M., and the vector N.  re- 

presents the peak load constraint (7.6). The plant capacities 

in merit order X1 are generated by 6 X. 

The capacity planning problem  (7.1) - (7.3)  can 

be written in equivalent form as a two-stage optimization 

; J  * j   f C'X +     Z 
t=l 

X > 0 

x £ n 

minimum 

ut > 0 

subject to 

Ft<V 

MtUt = «tX 

•A >. Qt 

(7.7) 

where the optimization within the inner brackets is just 

the subproblem discussed above.  The set tt    consists of 

all vectors X which allow a feasible solution in each of 

the subproblems.  Since the problem is convex, as will be 

demonstrated in the next section, the inner optimization 

can be replaced by its nonlinear programming dual 

maximize minimum [F.(U.) + X.(MtHt-6.X) 

At 
nt - ° 

ut > 0 

- VNtut-Qt
)] (7.8) 
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where \.     is a vector of dual multipliers, or shadow 

prices, on the loading order constraints (7.2), and  n. 

is a scalar multiplier on the peak-load constraint (7.3), 

The feasible set Q    can be equivalently described 

as the set of vectors X for which the maximum (7.8) is 

finite.  Since an infinite value can be obtained when 

Nt<>t < Qt 

or Mtüt ?  6tX 

this condition is equivalent to 

minimum [yt(MfcUt- fcX) - irfc(NfcUt-Qt) ] < 0 

-t - ° 

for all IT. >_ 0 and y. 

Then, the generalized Benders' master problem can 

be written 

maximize Z 
Z 

X > 0 

T 
subject to Z > C'X + E min  [F. (U.) + X. (M U<.-6.X) 

t=l U >0  c c    c c c c 

~1Tt(Nt-t"Qt) J for a11 ut - ° and -t  (7,9) 
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0 > min  [u. (M.U.-6.X)-ir. (N U -Q )] -   >Q -z     z-z     x. z     z  z     z 

t  = 1,...,T, for all ir. >_ 0 and y_ (7.10) 

X > 0,  Z unrestricted in sign 

Solving this problem is equivalent to solving the original 

problem (7.1) - (7.3); however, it has an infinite number 

of constraints since the number of possible values for 

At' üt an<* ut  *s ^nfinite«  Ifc *s generally solved by 

the strategy of relaxation, in which the constraints (7.9) 

and (7.10) are generated successively.  A relaxed version 

of the problem which includes only a few of the constraints 

(7.9) and (7.10) is solved to find a trial solution Z, x. 

If this trial solution violates some of the constraints 

not yet included, then one or more of the violated con- 

straints is generated and joined to the relaxed problem, 

which is solved again to find a new trial solution.  This 

procedure is continued until a trial solution is generated 

which satisfies all of the ignored constraints, and thus 

is optimal, or until a solution which is acceptably close 

to optimality has been found. 

Given a trial solution X, a violated constraint of 

the form (7.9) can be generated by solving the problems, 

for t = 1,...,T, 
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max min  [F. (U. )+X. (M. U. -5. X) -TT. (N. U. -Q*) ] (7.11) 
w
t>° fit±° 
At 

which are the nonlinear programming duals of the operating 

subproblems for periods t = 1,...,T 

minimize F.(U.) 
fit > o 

subject to M Ufc = 6fcX 

»A >  Qt 

The solution obtained from solving equations (7.5) is Ü. . 

The optimal dual multipliers ir.  and X       are determined 

from the Kuhn-Tucker conditions for this problem.  The 

details of this solution are discussed in Section B of 

this chapter.  The cost constraint thus generated in the 

master problem is 

T 
Z > C'X+ Z   [Ft(Ut)+Xt(MtGt-5tX)-TTt(NtGt-Q*)]  or 

T 
Z > C»X + Z   [F. (U.)+A <S. (X-X)] 

t=1  t  t   z  r. 

since M
tfit 

= 61X and since complementary slackness 

guarantees that t (N Ut~Qt) • 0«  This constraint is 

the most violated among those of (7.9) which have not yet 
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been included in the relaxed master problem because it 

was chosen by maximizing the right-hand sides of these 

constraints.  If the trial solution Z, X satisfies this 

constraint then it must also satisfy all of the other 

as-yet-unincluded constraints. 

A. 

If the trial solution X leads to an infeasible 

subproblem in some periods t, a violated constraint of 

the form (7.10) can be generated by solving the subproblems 

max min  [p (M U -5 X) -IT (N U -Q*) ] . 
Et  Mt> 0  c  *   *   trtt 

Trt>0 

If, for any values of IT. _> 0 and y. , the inner minimi- 

zation yields a positive value, then the maximum can be 

increased without bound simply by multiplying y_t and IT. 

by a > 0 and letting a •* +°°.  For definiteness, choose 

TT. = 1.  Then this problem is the linear programming dual 

of 

minimize N.U 

subject to M U = 6 X (7.12) 

and the optimal multipliers y  are determined from the 

dual problem.  Further discussion of this problem is found 
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in Section C of this chapter.  The feasibility constraint 

thus generated in the master problem is 

Wt(MtUt-6tX) - (NtUfc-Qt) > 0 

or  NtUt+yt6t(X-X) > Q* 

It will be shown in Section C of this chapter that the 

optimal dual solution for the problem is u_. = e = [1,1,...,!]' 

Since 

Ä A^i,t W  Ail ^ 

NU  =0^  =  1  X   = e*6.X, z x. i=1        t 

this constraint can be written 

h it „. or       E X  > Q. ; 
i=l       z 

that is, enough capacity must be available in each period t 

to satisfy the peak demand.  Clearly, these constraints 

are so simple that they can be included in the master 

problem from the beginning, rather than being generated 

when infeasible subproblems are discovered. 

Finally, the relaxed masterproblem can be written 
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minimize Z 
Z, X 

T 
subject to  Z > C'X +  E [F (U*)+X*5. (Xk-X) ]   k=l,...,K 

t=1 t r  t r 

£'6t- - 
Qt  t = 1,... ,T 

X > 0 

where X  is the k  trial solution generated and U 

and \.     are the associated primal and dual solutions 

to the operating subproblems.  This relaxed master problem 

is just the problem (3.13) - (3.15) given in Chapter 3. 

Notice that it is a 'linear program. 

Since the procedure described above generates the 

most violated of the master problem constraints, in the 

sense that if the current trial solution X, Z satisfies 

the new constraint it generates, it satisfies all the 

remaining constraints, the current trial solution is 

optimal when it satisfies the newly generated constraint. 

Also, since the current trial solution X is a feasible 

capacity expansion plan, the cost of this plan (the 

right-hand side of the new constraint, with X = X)  is 

an upper bound on the optimal cost.  Furthermore, the 

current value Z  is a lower bound, since it is determined 

in a relaxed version of the master problem.  These bounds 

can be used to terminate the procedure prior to optimality 
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with known error bounds.  If a satisfactory solution 

(optimal or near-optimal) has not been found, then the 

new constraints are added to the master problem, and a 

new trial plan is determined as the optimal solution to 

the new relaxed master. 
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B.  Solution of the Subproblem 

In the previous section, the operating subprobl« 

(7.4) - (7.6) and its duai (7.8) were used to generate 

cost constraints in the master problem.  In order to 

replace the subproblem by its dual, the global optimality 

conditions, described in the introduction to Part Two, 

must be satisfied. 

Proposition:  The operating subproblem (7.4) - (7.6) 

is a convex program. 

Proof:  The load duration function G(Q)  decreases 

monotonically with increasing load since the time when 

the load exceeds a higher level C, is a subset of the 

time in which it exceeds a lower level Q_.  Thus 

G«^) < G(Q2)  for Q±  > Q2. 

If Q* is the peak load during the period, then 

G(Q) • 0 for Q ^ Q*.  Furthermore,  G(Q)  is defined 

to be constant (equal to the duration of the period) 

for Q < 0. 

Define the function 

Q 
W(Q) = / G(£)d£ 

0 

in each subproblem.  Since  G(Q)  decreases monotonically, 
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W(Q)  is concave.  Since G(Q) =0 for Q _> Q*, 

W(Q) = W(Q*)  for Q ^ Q*.  The objective function of 

the subproblem (7.4) can be rewritten 

I . n 
E F^WdJ1) - W(U  )] = 

i=l 

F^dJ1) - FHKO) -  E [F1+1 - F^-jWtU1) 
i=l 

By definition of the merit order,  F1  > F1,  Further- 

more, W(0) = 0 and because of the peak-load constraint 

(7.6),  W(U ) = W(Q*).  Hence the objective function is 

equivalent to 

F^fQ*) - z   [F1+1 _ F^WfU1) (7.13) 
i=l 

where the first term is constant and the remaining terms 

are convex.  Therefore, the functions *"+•(£*.)  are convex' 

and the operating subproblem for each period is a convex 

program, since its feasible region is defined by linear 

inequalities (7.5) and (7.6). || 

The convexity of this problem means that a solution 

which satisfies the Kuhn-Tucker conditions, Theorem 1 of 

the Introduction, is globally optimal, and the Strong 

Duality property, Theorem 3, allows replacement of the 

subproblem by its dual. 
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The operating subproblem can be rewritten 

minimize F^Q*) - Z   [F1+1 - F^WfU1) (7.13) 
i=l 

subject to U1 - U1"1 = X1   i = 1,...,I (7.5) 

U1       > Q* (7.6) 

U1 > 0 

The problem (7.8) is just the nonlinear programming dual 

of this subproblem.  Let X1 be the dual multiplier 

associated with the i— loading order constraint (7.5) 

and IT be the multiplier associated with the peak-load 

constraint (7.6).  Since constraints (7.5) are equalities, 

X1 is unrestricted in sign while IT must be non-negative. 

Define the Lagrangian function for the problem L(U,A_,Tr) 

in the usual manner.  The Kuhn-Tucker conditions for 

optimality in this problem are 

i)  «, > o with equality if U1 > 0; 
3U 

ii)  Complementary slackness between TT and constraint 

(7.6); and 

iii)  U ,...,U  satisfy constraints (7.5) and (7.6). 

Note that because the problem is convex, as was proved 

above, these conditions are sufficient, as well as necessary, 
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for optimality. 

Assuming, for the moment, that this subproblem is 

feasible and that U1 > 0 for all i  (which is guaranteed 

by having X > 0), condition (i) gives a set of equations 

XX  - X1+1 = (F1*1^1) GfU1)   i = 1,...,I-1 
(7.14) 

X1 - TT = 0 

ir >. Of X  unrestricted in sign 

If, as will often be the case, U > Ö*, then i: = 0, and 

the shadow prices X      can be determined by solving this 

set of backward recursion equations.  If U = Q*, which 

will almost certainly occur when the set of plant capacities 

is optimal in the planning problem, or if U1 = 0 for 

some of the plants i, which can occur if some of the plants 

low in the merit order are uneconomical to build, then the 

subproblems are degenerate, and the Kuhn-Tucker conditions 

give only inequalities instead of equations.  These de- 

generate cases are discussed in Section D of this chapter. 

As has been noted previously, the constraints (7.5) 

have a single solution 

U1 = Z Xn   i = 1,... ,1 (7.15) 
n=l 
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and this solution is feasible if U ^ Q*.  Thus solving 

the operating subproblem is almost trivially easy.  The 

plants are arranged in merit order, and equations (7.15) 

are used to compute the loading points U1.  Then equations 

(7.14) are used to find the shadow prices which generate 

the constraint in the master problem.  Even though the 

subproblem is a nonlinear program, no explicit optimization 

is required to solve it, because the optimal solution is 

known beforehand to be merit order operation.  The explicit 

optimization is performed in the master problem, which is 

a linear program. 
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C.  Subproblem Infeasibility 

It was assumed in the previous section that each 

subproblem has a feasible solution.  Insuring feasibility 

is a matter of generating the proper constraints on the 

values of X1 which are sent to the subproblem.  These 

constraints are implicit in the subproblem, and when a 

violation occurs, it is necessary to generate an explicit 

constraint on the X in the master problem. 

Consider the related subproblem 

maximize U 

U1,...,VT 

subject to U1 - U   = X1   i = !,...,! 

U1 > 0 

which is just problem (7.12) of Section A.  Clearly, the 

operating subproblem (7.4)-(7.6) has a feasible soltuion 

if and only if there is a solution to this related sub- 

problem with 

Q* < max U1 

This problem is a linear program which always has a 

feasible solution, namely 
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ü1 = X1 +  + x1. 

The dual of this problem is 

I   . . 
minimize  E x y 
1     I i=l 

y »• • • ,y 

subject to y-y   >0   i= 1,...,I-1 

>i 

y1 unrestricted in sign 

which can be restated as 

I 
Z 

i=l 
minimize  Z    X1y1 

12        I 
subject to y  >_ y  > ••• > V  > 1 

If all X1 > 0, then clearly the unique optimal solution 

is to set 

12        I  , y  =y  =...=y  =1 

and then 

II        I max U = Xx + ... + X 

by the duality theorem for linear programs.  The solution 

is unique except when 

<+d 
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X1 = X2 = ... - X1 = 0. 

Thus the master problem constraint which insures feasibi- 

lity in the operating subproblem for period t is 

xt it    • E  X ^ > Q. , 
i=l    " fc 

which is the feasibility constraint used in the master 

problem in Section A.  While this constraint is intuitively 

obvious, the rigorous derivation serves as a demonstration 

of the technique, which will be used in deriving feasibi- 

lity constraints for the probabilistic model in the next 

chapter, where they are not obvious. 

* 
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D.  Subproblem Degeneracy 

Consider now what happens if in the subproblem 

(7.4)-(7.6) 

U1 = Q* 

In this case, it is not necessary that ir = 0 and there- 

fore, the Kuhn-Tucker conditions do not give a unique set 

of multipliers.  Therefore, this case represents a problem 

of degeneracy.  Suppose that XQ is the solution to the 

recursion equations (7.14) obtained when ir = 0.  In the 

degenerate case, any other solution of the form 

X1 = Xj + IT    i = 1,... ,1 

with ir ^ 0 is also valid. 

In this degenerate case, the dual subproblem becomes 

I 
min {F(U) + 
U>0        i 

ir>0 

max min {F(U) +  E (XJ+TT) (U1-U1"1-X1) - ird^-Q*)} 
X  U>0        i=l  U 

= max min {F(U) +  Z  xJt^-U  -X ) + TT (Q* -  E  X } 
X  U>0        i=l i=l 
•n>0 

I 
which is finite if and only if  I    X1 > Q*.  This is 

i=l 

just the feasibility constraint derived in the previous 

aria 
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section. 

The meaning of this argument can be elucidated by 

the following reasoning.  In the degenerate case, if the 

value of Q is perturbed slightly to Q+6,   the degeneracy 

disappears.  If <5  is negative, then the situation is 

just the nondegenerate case discussed in Section C, and 

the optimal multipliers  X  are unique, as given by 

equation (7.14).  If 5  is positive, however, the sub- 

problem becomes infeasible, since now 

U1 = X1 + ... + X1 < Q + 5. 

In this case, a feasibility constraint would be generated, 

according to the reasoning of Section C.  Hence, a de- 

generate subproblem must generate both a set of shadow 

prices X* and a feasibility constraint. 

A similar argument can be applied in the degenerate 

case when U1 = 0 for some set of i.  Recall that in 

this case, the Kuhn-Tucker conditions are inequalities 

in the shadow prices, rather than equations, so that again 

the X1 are not unique.  Applying the perturbation argument 

to the plant capacities X1 generates a set of shadow 

prices XQ by considering the Kuhn-Tucker conditions as 

equalities, when 5 > 0, and a feasibility constraint when 

6 < 0.  The feasibility constraint is just 

X1 > 0. 
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CHAPTER 8 

SOME TECHNICAL ISSUES ASSOCIATED WITH 

THE PROBABILISTIC MODEL 

A.  Derivation of the Master Problem 

Recall that the probabilistic capacity expansion 

planning model is stated in Chapter 4 as follows: 

minimize  C*X + I     EFt(Y_t) (8.1) 
X / X , • . • / Y _,        t= 1 

subject to  EG.(Y ) < e (8.2) 
r r    *   t = 1,...,T 

Yt < «tX (8.3) 

X > 0 Yfc > 0 

where, as before,  X is the vector of plant capacities 

to be built, and C is the vector of plant capital costs 

per unit of capacity.  For period t, the matrix 6.  creates 

the merit ordering of the plant capacities, and the vector 

Y  contains the utilization levels of the plants  The 

constraining value for unserved energy in period t is e.. 

Associated with this capacity planning problem, 

there is, for each period t in the planning horizon, an 

operating subproblem of the form 
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I      u1 

minimize  I     FXp. /   G.(Q)dQ (8.4) 

Y1 Y1 i=1     U1"1 

subject to / GI+1(Q)dQ < e (8.5) 

U1 

0 < Y1 < X1 (8.6) 

(The index t indicating the time period has been sup- 

pressed for clarity.)  As before,  Y1  is the utilization 

level for the i  plant, and the plant loading points are 

defined by 

U1 - U1"1 = Y1   i = 1,...,I (8.7) 

with U =0.  The function G.(Q)  represents the equi- 

valent load duration curve faced by the i— plant, defined 

by the probabilistic simulation recursion 

Gi+1(Q) = PjG^Q) + qiGi(Q-Y
1)   i = 1, . . . ,1    (8.8) 

with G.(Q) s G(Q), where G(Q)  is the system load duration 

curve,  p.  is the availability of plant i, and its forced 

outage rate is q. = 1-p..  The operating cost coefficients, 

as before, are denoted by F1,  and the merit order indices i 

are defined so that F1 <_  F1 

These operating subproblems are included within the 

capacity planning problem.  The plant 

• 

utilization levels V1 
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in the subproblem for period t form the vector Y  in 

the capacity planning problem.  The objective function (8.4) 

is the operating cost function EF.(Y.), and the expected 

unserved energy in (8.5) is represented by the function 

EGt(Yfc). 

The probabilistic capacity planning model (8.1)-(8.3) 

can be written in equivalent form as a two-stage optimi- 

zation 

minimize 
X > 0 
Xe n 

T 
:' x + z 

t=i 
minimum EF (Y ) 
Y > 0   * c 

subject to EGfc(Yt) < efc 

It 1 «tS 

(8.9) 

where the optimization within the inner brackets is just 

the operating subproblem (8.4)-(8.6).  The set Ü    consists 

of all capacity vectors X which allow a feasible solution 

in each of the subproblems.  By the duality properties of 

the subproblem, to be discussed in the next section, the 

inner optimization can be replaced by its dual. 

maximize minimum {EF (Y) + TT. [EG. (Y. ) -e. ] 
Xt,irt>0  Yt>0     

Z  -t    c  c t  c 

+ Xt[Yt - 6fcX]} (8.10) 
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where \.     is a vector of dual multipliers on the capacity 

constraints (8.6) and TT.  is a scalar multiplier on the 

unserved energy constraint (8.5). 

The feasible set Q    car.  be equivalently described 

as the set of vectors X for which the maximum in (8.10) 

is finite.  Since an infinite value can be obtained for 

the maximization if any component of  [Y. - <SfcX]  is 

positive or if EG.(Y.) > e., this condition is equivalent 

to 

minimum {TT. [EG. (Y. ) -e. ] - u. [Y -6 X] } < 0 
Y >0 

for all ^t'^-t 1.  ° 

Then, the generalized Benders' master problem can 

be written 

minimize Z 
Z,X 

subject to 
T 

Z > C'X + Z     min  {EFfc (Y_t)+Trt [EGt(Yfc)-et] + At fY-t"6t-] } {B-X1) 

t=l Yt>_0 

for all IT ,X_ > 0 
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0>     E    min     {ir   [EG   (U  )-e.]   +  p. [Y. -6. X] } (8.12) 
t=l Yt>0       c ü t     t     t- 

for all TT   ,   p     >_ 

X  >  0 

Solving this problem is equivalent to solving the original 

problem (8.1) - (8.3). 

This master problem is solved by the relaxation stra- 

tegy, described in the previous chapter, in which the con- 

straints (8.11) and (8.12) are generated successively.  A 

relaxed version of the problem, containing only a few of 

these constraints, is solved for a trial solution  (Z,X). 

A violated constraint of the form (8.11) can be generated 

by solving the problem, for each period t, 

maximize minimize {EF.(Y ) + it [EG (Y )-e.] + A. [Y.-6.X]}. 
Xt,irt>0  Yt>0 

Z t  t  t  t   -t -t t- 

As noted above, this problem is the dual of the operating 

subproblem 

minimize EF.(Y.) 
Yfc>0      

Z     C 

subject to EG.(Y ) <_ c 

It 1 6t* 

i i 
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The optimal primal solution Y  is obtained by solving 

this subproblem, and the optimal dual multipliers TT 

and  X.  are determined from the Kuhn-Tucker conditions 

for this problem.  The details of solving the subproblems 

are discussed in Section B of this chpater.  The cost 

constraint thus generated in the master problem is 

Z > C'X + Z     {EFt(Yt) + ut[EGt(Yt)-et] + it[£t-6tX]} 

A   ä T 
or  Z > c'x +  E [EF (Y ) + X.6.(X-X)]  since 

t=l   t C   ""* Z 

A     A. A 

wt[EGt(Yt)-etl • 0 and A.t(Yt-6tX) = 0 by complementary 

slackness. 

If the trial solution X leads to infeasible sub- 

problems in some of the periods t, a violated constraint 

of the form (8.12) is generated by solving the subproblems 

maximize minimum (ir [EG. (Y.)-e.] + y. [Y -6.X]}. 
V^t   -t-° 

If, for any value of ir. , u_t >_ 0, the inner minimization 

yields a positive value, then the maximum can be increased 

without bound.  By n- —malizing, as in the previous chapter, 

with v.   = 1, this p?  Lern becomes the dual of 
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minimize EG.(Y.) 

A 

subject to Yt < 5fcX 

A 

The optimal primal solution Y.  is obtained by solving 

this problem and the optimal multipliers y.  are deter- 

mined from the Kuhn-Tucker conditions.  The details of 

the solution are discussed in Section C of this chapter. 

The feasibility constraint generated in the master 

problem is 

A     A 

0 > I     {[EG (Y )-e ] + p [Y -6 X]} 
~ ter    t t  t    v.    c t- 

A     A A 

or, since by complementary slackness Pt[Y.-6.X] = 0, 

Z     [EG.(Y.) + y.6.(X-X)] < I     e. 
ter   z * z ter z- 

where the sums are taken over the set r of periods 
A 

in which EGt(Yfc) > efc. 

Finally, the relaxed master problem can be written 
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minimize  Z 
Z,X 

subject to 

Z > ClX + Z   [EF. (Y*) + A*6.(Xk-X)]  k = 1,...,K 
t=l " 

I  tEG.(Y^) + u*6,.(Xk-X)] •  Z  e.  k = 1,...,K 

ter* terK 

X > 0 

where X  is the k— trial solution generated and Y 

k  k and X. ,   u_.  are the associated primal and dual solutions 

to the operating subproblems.  This relaxed master problem 

is just the problem given in Chapter 4, (4.16) - (4.18). 

Notice that, as in the last chapter, this master problem 

is a linear program. 

As noted previously, the constraints generated by 

solving the subproblems are the most violated of the con- 

straints not yet included in the master problem.  Hence 

if the current trial solution  (Z,X)  satisfies the new 

constraints it generates, then it is optimal.  Further- 

more, the value of Z is a lower bound on the cost of 

the optimal solution, and if x is feasible, the cost 

of this solution is an upper bound on the optimal cost. 

These bounds can be used to terminate the procedure prior 
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to optimality with known error bounds.  If a satisfactory 

solution (optimal or near-optimal) has not been found, then 

the newly generated constraints are added to the master 

problem, which is then re-solved to generate a new trial 

plan. 
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B.  Solution of the Subproblem 

The subproblem of the probabilistic planning model 

is somewhat more complex than that of the deterministic 

model discussed in the previous chapter.  The optimal 

solution of this subproblem is not quite so obvious as 

it was in the deterministic case, nor are its duality 

properties established by a simple convexity argument. 

Nevertheless, it will be shown that this subproblem is 

a relatively well-behaved optimization problem and that 

the required duality properties do hold.  The strategy 

of this section will be to propose solutions for the 

subproblem and its dual and to show that they satisfy 

the global optimality conditions stated in the intro- 

duction to this part. Not only will this argument 

demonstrate that the proposed solutions are, in fact, 

optimal, but it will also establish the Strong Duality 

property required to justify replacing the subproblem by 

its dual in the derivation of the generalized Benders' 

master problem. 

The operating subproblem of the probabilistic model 

was stated above as 
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I   ,    ü1 
minimize EF(Y) =  E FXp. /   G.(Q)dQ        (8.4) 

Y1,...^1 i=1      U1"1  * 

subject to EG(Y) = / GI+1(Q)dQ < e (8.5) 
Ü1 

0 < Y1 < X1 (8.6) 

where U1 - U1"1 = Y1 

with U° = 0 
(8.7) 

Assume, for the moment, that this subproblem has a 

feasible solution and that X1 > 0  for all  i.  This 

problem is not a convex program, since the cost function 

EF(Y)  is not convex. 

The proposed optimal solution for this problem is 

to set Y • X1 successively for each plant in merit order 

until the unserved energy constraint (8.5) is exactly 

satisfied.  The last plant so loaded, the marginal plant, 

will generally not have to be used at full capacity.  The 

plants above the marginal plant do not operate.  Let n 

be the index of the marginal plant; then the solution is 

:' • {:' 
for  i *  n (8.13) 
for  i > n 
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n 
and Y  is set so that 

/ Gn+1(Q)dQ = e 

with    0 < Yn < Xn 

The Kuhn-Tucker conditions can be applied to this 

solution to propose a solution to the dual problem.  Let 

IT be the dual multiplier associated with the unserved 

energy constraint (8.5), and let X1 be the multiplier 

associated with the i— capacity constraint (8.6).  Since 

all of the constraints are inequalities,  TT and X1 

must all be non-negative.  Define the Lagrangian function 

for the problem as 

L(Y,X,TT) = EF(Y) + 7T[EG(Y)-e] + X[Y-X] 

I   .    U1 

=  E  F p. /    G. (Q)dQ + *[/  G   (Q)dQ-e] 
i=l   * „i-1 „I   X 

U U 

I 
Z 

i=l 
+  E  X^IY^X1! (8.14) 

The Lagrangian minimization problem associated with the 

subproblem is to 

minimize L(Y,^,TT) 
Y > 0 
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with the multipliers  TT and X    held fixed as parameters, 

The Kuhn-Tucker conditions give necessary conditions for 

a local minimum in this problem: 

g 
i)  Stationarity:  —^H,Y,\,-n)   > 0  i = 1,...,I 

3Y 

with equality if Y1 > 0 

ii)  Complementary Slackness: 

ir[EG(Y)-e] = o 

AfY-X] - 0 

Then, dual multipliers satisfying these conditions 

when Y • Y are 

X1 '- -2-fEFm   - ir-^-EGfY)  for  i < n 
3Y 3Y1 

^  0 for i ^. n 

Now,  TT is the shadow price on unserved energy, the 

marginal cost associated with a small decrease in e. 

Since decreasing the unserved energy requires additional 

generation from the marginal plant, this marginal cost 

is just the cost of operating that plant.  Hence 

IT = Pn                          (8. 16) 
t 

This reasoning can be confirmed rigorously by referring 

• 

• 
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to the Kuhn-Tucker conditions for plant n.  Assuming 

0 < Yn < Xn  (the degenerate case when equality holds at 

one of these bounds is discussed in Section D), then 

X    =0 and condition (i) must hold with equality. 

Therefore 

U_JLEG(Y) = ^TEF(Y) 
3Y       ay 

rl = or, since Y = 0 for i > n, 

,n 
A. • U 

ir-^~ / Gn+.(Q)dQ = -An -\ I G (Q)dQ. 
3Yn J,n n+1 n 3Yn yn-1 n 

Evaluating the derivatives gives 

;<-PnGn(ün)) =-FXGn(ün> 

or ii = F  as promised.  A similar argument shows that 

for i > n 

ITXEGIY) > ^-EPtY) 
3Y1 3Y1 

as required by condition (i). 

These proposed solutions Y and  (X.,iO  can be 

proven optimal by showing that they satisfy the global 

optimality conditons stated in the Introduction to this 

part: 
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i)  Minimality:  Y minimizes L(Y,A^IT)  over Y >_ 0. 

ii)  Complementary Slackness. 

iii)  Feasibility. 

The feasibility condition (iii) is satisfied because Y 

is feasible in (8.4) - (8.6) and because \  >^  0  and v  >_ 0. 

The complementary slackness condition (ii) is the same as. 

appears in the Kuhn-Tucker conditions and is therefore 

satisfied (recall that Y  is defined so that there is 

no slack in the unserved energy constraint).  Hence, it 

is only required to show that the minimality condition (i) 

is satisfied.  Now, the Kuhn-Tucker stationarity condition 

is a necessary condition for a local minimum, but it is 

not sufficient.  The proof that Y minimizes L(Y,A.,TT) 

actually consists of two propositions.  The first establishes 

that at least pare of the Lagrangian is convex; the second 

establishes that at a local minimum of the Lagrangian, 

the nonconvex part must be zero.  Then, by the well-known 

property of convex functions that a stationary point is 

a global minimum, it can be concluded that the minimality 

condition (i) is satisfied. 

First Proposition:  The function 

,i n       U 
/ 

u1' * 
E  FV /    G. (Q)dQ • t  I     Gn,,(Q)dQ (8.17) 

i=l     „i-1 „n  n i 
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xs convex. 

Proof:  Despite the apparent complexity of the 

function, resulting from the recursive definition of the 

equivalent load duration functions G.(Q), it actually 

has a rather simple structure.  It is a convex combination 

of simpler functions defined in various outage states. 

Define an outage state to be the occurrence of 

a random event in N&ich a given subset I  of the plants 

are available and the complementary subset I '  are out. 

Given I plants in all, there are 2  possible outage 

states.  Define the indicators 

0 r 
10 

1 if plant i is available in state a, and 

0 if not. 

The probability of state a    occurring is 

1  ei„ <1-e<«> 
• - n p. 10q.   ia . a   i-1 4   qi 

Define the plant loading points in state a as 

Vo " Va"1= 9iaYi L  = X l 

with V - 0.  As in the deterministic case, the energy 

produced by plant i in state o is 

• 

• 
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/   G(Q)dQ 

a 

which is zero if plant i is not available- because 

V1 = V1" .  Notice that the system load duration curve o   a 

is used rather than the equivalent load duration curve. 

For plants which are available in state a, an alternative 

expression for the energy produced is 

/   G(Q - Ua x + v„ i)dQ 

u i-l 
a 

where the term U   - V    is the capacity on outage 

below plant i in the merit order. 

The equivalent load duration curve G.  is an expectation 

over all outage states 

21 

G.(Q) = I     4 G(Q - U1"1 + V^"1). 1     a=l  a ° 

Because the number of outage states grows exponentially 

with the number of plants, it is not convenient to deal 

with the states explicitly.  Defining the equivalent load 

duration curves recursively, as was done in Chapter 4, 

allows the outage states to be dealt with implicitly. 
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* 
Similarly, the expected energy produced by plant i 

t is 
1 

71              Vi                   n1 ^     0             u      .   . 1 
E  •_ /    G(Q)dQ = E A i          G(Q-U1_1+vi X)dQ 

0=1 ü vi-l        a 
a ii-1 

a 

where the second summation is made over all states a  in 

which plant i is available.  This last sum is equivalent 

to 

u1 
Pi /    G.(Q)dQ, 

the expression for expected energy which was derived 

previously. 

Now, if ir is considered to be a cost coefficient 

for unserved energy, then the cost for operating plants 

up to and including plant n in state 0 is 

n   .   0 A ~ 
E  F1 /   G(Q)dQ + TT /  G(Q)dQ (8.18) 

i-1   yi-l vn 
0 0 

This function is convex in the VZ# and therefore in the 

Y1, by the same argument used to establish the convexity 

of the cost function in the deterministic model (in 

Section B of Chapter 7).  That is, the function 

Q 
W(Q) = / GU)df, 
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is concave because G(Q)  is monotonically decreasing. 

Thus (8.18) can be rewritten as i 

Z    Fi[W(vb-W(vi"1Ü+^[W(»)-W(v")] 
i=l      ° a a 

n-lr„i+l r,i = ;W(«.) - "I [F1+1-P1]W(VJ) - [ir-Fn]W(vJ) 
i=l 

which is convex because F   ^ F  by definition of the 

merit order,  ir = F , and W(Q)  is concave. 

Now, the function (8.17) is just the expectation, 

taken over all outage states, 

21 n       t     
Vo 

Z     <t>   [   Z     F1  / G(Q)dQ  +  TT   /     G(Q)dQ] 

a a 

n       . U1 x    a» 
=     I     F p.   / G. (Q)dQ  +  TT   /     G   .,(Q)dQ, 

l-l Oi-1 ön 

which is a convex combination of convex functions because 

21 

Z    $a  = 1 and 4>a > 0 

and is therefore convex. || 

Second Proposition;  In the Lagrangian minimization 

problem, with X = X and TT = IT, any local minimum has 
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Y1 = 0 for i > n. 

Proof:  Suppose there is a solution with Y1 > 0 for 

some i > n.  In fact, let i index the plant highest in 

the merit order with Y > 0.  Then 

U1 « U1 

and      GI+1(Q) = G±+1(Q), 

and the terms of the Lagrangian (8.14) which depend on 

Y1 are 

U1 

XV" + FV /    G. (Q)dQ + IT / G.+1(Q)dQ 
i-1 i U1 x U1 

This expression can be rewritten as 

M i    i    ui_1+Yi -    r \XXX  + FXp. /     G.(Q)dQ + up, /      G (Q)dQ 

OB 

+ TTq. /    G. (Q)dQ 
i-1 Ü 

using the recursive definition of G.+,  in (8.8); the 

final term does not depend on Y1.  Since G.(Q)  is 

positive, the function 

Q 
Wi(Q) = / Gi(Q)dQ 
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is increasing.  Then the Y1 dependent terms in the 

expression above can be written as 

XV" + pi[F
i-ix]Wi(U

i"1+Yi) + Trp^t») - F^-p^di1"1) 

where the final two terms do not depend on Y1.  Since 

n • Fn < F1 and X1 = ü, the terms 

PifF^njV^d'1"^1) 

decrease as Y1 decreases.  Hence, the cost of the 

solution with Y    >  0 can be reduced by taking Y1 = 0. 

This argument can be applied successively to each 

Y1 > 0, i > n, to show that Yx « 0 for all i > n in 

any locally optimal solution to the Lagranaian minimiza- 

tion problem. || 

These two propositions together establish that Y 

minimizes L(Y,X^ir)  over Y >_ 0.  For the second 

proposition establishes that in any local minimum Y1 = 0 

for i > n.  Therefore minimizing the Lagrangian (8.14) 

is equivalent to minimizing the function 

n  .   U1 Ä » A 1     F Pi /   G, (Q)dQ + if /  G ..(Q)dQ + XV. 
i=l   x i-1 1 n n+1 ' 
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This function is the sum of (8.17), proved convex in 

the first proposition, and a linear term.  It is there- 

fore convex, and hence, the stationarity condition (i) 

of the Kuhn-Tucker conditions is sufficient to establish 

global minimality.  Thus,  Y  satisfies the alobal 

optimality condition (i) , and Y and  U,ir)  together 

constitute the optimal primal and dual solutions for the 

subproblem (8.4) - (8.6). 

An important consequence of this proof is that the 

optimal value of the objective function in the primal 

subproblem (8.4) - (8.6) is equal to the optimal value 

of the dual problem 

maximize minimum L(Y,X,ir), 
A,ir    Y > 0 

the Strong Duality property. This fact justifies the 

use of the dual problem in place of the primal in the 

derivation of the master problem in Section A. 

Actual computation of the solution to the subproblem 

and, particularly, of the subproblem shadow prices is a 

sufficiently intricate calculation to warrant a separate 

discussion, found in Chapter 9.  However, while determina- 

tion of these solutions is not auite as trivial as it '.ras 
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in the deterministic model, discussed in the previous 

chapter, it still does not require any explicit optimi- 

zation.  Hence the separation of the explicit optimi- 

zation in the master problem, v/hich is a linear program, 

from the implicit optimization in the subproblen leads 

to an efficient algorithm for solving the probabilistic 

capacity planning problem. 
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C.  Subproblen Infeasibiljty 

It v/as assumed in the previous section that eacli 

subproblen has a feasible solution.  As noted before, 

insuring feasibility is a natter of generating the proper 

constraints on the values of X which are sent to the 

subproblems.  These constraints are inplicit in the 

subproblems, and when a violation occurs, it is necessary 

to generate an explicit constraint on the X in the 

master problem. 

Consider the problem of determining, for given X, 

whether or not subprobler.s have feasible solutions. 

This problem can be posed as an optimization of the fom 

minimize  I w 
\llt...,\l„  t=l 

2j_ i • • • i Y^, 

(8.19) 

subject to EG.(Y.) - e. « V 

0 1 It 1  6t2S 

wt - ° 

1 , ••• ,T 

(8.20) 

(8.21) 

The variables Wfc are called artificial variables, and 

the objective function is usually known as an infeasibiljty 

form.  Clearly the vector X allows feasible solutions 

if and only if the minimum in this problem is zero. 

_ta 



186. 

The problem (8.19) - (8.21) is a convex program, 

and it is equivalent to the ilual problem 

T 
maximize   minimum    Z {W,. + *t[EC.(Y.)-e -wt] 
ir1,...rirT  ;*!,...,WT>0 t=l 

+ ü.tlIt"6t^l} (8*22) 

This dual problem must have its maximum equal to zero 

to insure feasibility. Note that the dual problem 

decomposes into independent problems for each period, 

of the form 

maximize minimum {W.+w. (EG. (Yj-e. -W.J+u.fY. -6. XJ} 

*t     Wt-° 
üti0    Iti° 

The optimal dual multipliers IT and v    for this problem 

can be found by applying the Kuhn-Tucker conditions, 

which require that 

i) 1 - IT > 0, with equalify if w > 0 

ii) VJLEG(Y)  + M1 > 0, with ecruality if Y1 > 0. 
3YX 

iii) it fEG(Y)-e-W] - 0 

M[Y-X] - 0 
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If the subproblem is infeasible for this period, 

then W > 0 and n = 1. Thus the dual problem given 

above is equivalent to 

minimize EG (Yfc) 

subject to 0 < Yt <_ 6fcX 

which was given in Section A.  In order to minimize the 

infeasibility, each Y1 vail be set to its upper bound 

X . Hence (assuming that X1 > 0),  the multipliers y1 

are determined by 

y1 . - -LEGW   i - 1,...,I (8.23) 
3Y1 

with  Y1  X1 i * !,...,! 

If, on the other hand, the problem is feasible, then an 

optimal solution is to set it  • 0 and y. =0. 

Now, for a particular trial solution X, solving 

the problem (8.19) - (8.21) generates particular values 
A      A      A A 

Wfc, Y_t, y_t, and it.     which satisfy the dual relationship 

above.  Then for any feasible value of X it must be 

true that 
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Z     {Wt+tft[KGt(Yt)-et-Wt]   +  Mt[It-«tXl>   <  0 

or  E  {EG. (Y.)-e.+vi.6. [X-X] } < 0 
tcr  z -t z — " 

where T     is the set of periods in which X gives 

infeasible subproblens.  This is the feasibility con- 

straint given in Section A. 

It should be noted that even when the subproblem 

is infeasible, it is legitimate to generate a cost con- 

straint as well.  In this case, all the plants will be 

used to capacity, so that Y1 = X1 for all i, and 

thus the marginal plant will be the last plant in the 

merit order, so that n = I and ir = F . 
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D.  Subproblem Degeneracy 

When the subproblen has degenerate solutions, the 

Kuhn-Tucker conditions do not uniquely specify the dual 

multipliers.  Degeneracy can occur in two situations - 

first, if X1 • 0 so that Y1 satisfies both its upper 

and lower bounds simultaneously, and second, if Yn = x", 

so that the marginal plant is used to capacity.  In both 

cases, the degeneracy is resolved by a perturbation 

argument. 

The first case, where X1 = 0, is relatively 

straightforward. Suppose X1 were to be perturbed to 

a small positive value.  If i < n, that is plant i is 

below the marginal plant n in the merit order, it would 

be optimal to increase Y1 to a positive value as well. 

On the other hand, if i > n, it would be optimal to leave 

Y  at a zero level. Hence, in this case, Y1 behaves 

as if it were at its capacity when i < n and as if it 

were at zero when i > n.  Therefore, the dual multi- 

pliers are calculated in exactly the sane way as if X 

were positive instead of zero. 

The second case, where Yn = X11, is less straight- 

forward.  Suppose X  were to be perturbed by a small 

amount to X11 + 6.  If 6 > 0, then nevertheless, it 
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would not be optimal to increase Yn.  Therefore, plant n 

would remain the marginal plant and ir = Fn.  If, on 

the other hand,  6 < 0, then Yn would have to decrease 

n+1 and Y    would increase from zero.  Tnen plant n+1 

would become the marginal plant and v  = Fn  .  Hence, 

in this case, any value of ir between Fn and Fn 

would be acceptable as optimal, and alternative values 

of X  could be calculated with 

The dual solution is not unique. 

of X  could be calculated with different values of ir. 
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CHAPTER 9 

COMPUTATIONAL METHODS FOR THE 

PROBABILISTIC OPERATING SUBPROBLEM 

A.  Introduction 

Although the optimal solution to the operating sub- 

problem of the probabilistic model and its associated 

shadow prices were derived in the previous chapter, the 

actual computation of the solution was not discussed. 

In this chapter, some computational methods will be 

presented. 

The optimal solution to the subproblem was shown, 

in the last chapter, to be 

"'"{ 
for  1 < j < n 

for  n < j <  I 

(9.1) 

where the marginal plant index n is defined so that 

OB 

/  Gn+l
(Q)dQ = e 

U» 

with 0 < Yn < Xn.  The optimal dual multipliers, or 

shadow prices, were shown to be 
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-^•EF(Y) - Tr-^EGtY)  for 1 < j < n 
3YJ        3Y-1 

^ (9.2) 

0 for n < j < I 

and IT = Fn. 

D = v3 If the subproblem is infeasible, then YJ = XJ for all 

j, t • F > and the multipliers for the feasibility con- 

straint were shown to be 

uj » - -^rEG(Y)    j = 1,...,I (9.3) 
3YJ 

Recall that the expected operating cost function is 

defined by 

i 

EF(Y) = l     FV /"   G. (Q)dQ (9.4) 
i=l   x Mi-1 * 

I      U 
/ 
U 

and the expected unserved energy function by 

00 

EG(Y) = / GI+1(Q)dQ (9.5) 

Ü1 

The equivalent load duration curves are defined by the 

probabilistic simulation recursion 

-*J 
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• 

6<..(Q»Y
1,...,Y1i = p.G. (Q.-Y1,...^1'1) 'i+rv" »••••* *  fi«i 

+ qiGi(Q-Y
1;Y1,...,Y1"1)     (9.6) 

where p. • q* •» 1.  The arguments after the semi-colon 

have been included to show explicitly the dependence on 

Y.  (Call the argument before the semi-colon the zeroth 

argument, those after, the first through i  .)  The 

plant loading points defined by 

U1 - Ui-1 = Y1    i = !,...,! 

with U°       =0 

(9.7) 

All of the required computations in solving the sub- 

problem are based on the probabilistic simulation recursion 

(9.6).  The procedure is to convolve, one by one, each 

plant of the merit order into the load duration curve to 

form the equivalent load duration curve for the next plant. 

Using the equivalent load duration curve for the i— plant, 

it is determined whether this plant is the marginal plant, 

and its contribution to the expected operating cost and 

to meeting the unserved energy constraint are calculated, 

as will be described in Section B. The contribution of 

the i  load duration curve to the multipliers  X^  and 

. 
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vr  are also computed, as will be described in Section C. 

Determining the marginal plant is the key to finding the 

utilization levels of the plants, since according to (9.1), 

each plant below the marginal plant is used to capacity 

while plants above it are not used.  Once the marginal 

plant has been loaded, the probabilistic simulation 

recursion can be terminated, since the remaining plants, 

loaded at zero level, do not change the equivalent load 

duration curve. 

It is worthwhile, before concluding this section, 

to establish some properties of the equivalent load 

duration functions G.(Q).  Consider first some properties 

of the system load duration function G(Q): 

i)  G(Q) « 1  for Q < 0 

ii)  G(Q) • 0  for Q > Q* 

iii)  G(Q)  is monotonically decreasing 

These properties are inherited by the equivalent load 

duration functions, as can easily be shown by induction 

using the recursive definition (9;6): 

i)  Gi(Q) =1 for Q < 0 

ii)  G^Q) • 0 for Q > Q* + Y1 + ... + Y1"1 

iii)  G-(Q)  is monotonically decreasing 

-  • 
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In a computer program implementing these calculations, 

the function G.(Q)  is actually represented by a vector 

giving the function's values at discrete points of its 

domain.  The number of points required to represent the 

function, and hence the dimension of the vector, depends 

on the size of the increments into which the domain is 

divided.  Values of the function at points between those 

represented in the vector can be found by interpolation, 

and values of its integral can be computed numerically. 

It is not, however, necessary to represent the cost 

function EF or the unserved energy function EG in 

this way since their values will be computed only at 

the optimal utilization levels Y. 

-  • 
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B.  Determining the Marginal Plant and Computing Expected 

Operating Cost and Energy 

Finding the marginal plant is the controlling factor 

in the probabilistic simulation loop, since once it has 

been found, the loop can be terminated.  The marginal 

plant is defined as that plant which just satisfies the 

unserved energy constraint.  Therefore, as each plant is 

loaded in the probabilistic simulation loop, its contri- 

bution to meeting the unserved energy is accumulated, until 

the plant which just satisfies the constraint is found. 

Let AE.(Y1)  be the expected energy produced by the 

i  plant when it is loaded at level Y 

U^+Y1 

AE. (YX) = /      G. (Q)dQ 

Note that the unserved energy constraint 

/ G T(Q)dQ < e 

U 

can be rewritten 

I  Ux 

l     I        G.(Q)dQ > E 
i-1 „i-1 x 

- e 

(9.8) 
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where E is the total energy demanded 

Q* 
E = /  G(Q)dQ 

0 

because the total energy demand must equal the sum of the 

expected energy produced and the expected unserved energy. 

Now suppose n-1 plants have been loaded and the unserved 

energy constraint has not yet been satisfied.  Since all 

of these plants will have been loaded to capacity, the 

n  plant will satisfy the constraint if and only if 

n-1 
AE (Yn) + Z     AE.(X1) = E - e (9.9) 

i=l 

for some Yn such that 0 < Yn < Xn.  When the energy 

AE (Yn)  is computed by numerically integrating (9.8), 

using, for example, the trapezoidal rule, it is computed 

for successive increments of Yn between zero and X . 

Thus, it is a simple matter to detect a value for Yn 

for which (9.9) is satisfied.  If such a value is found, 

then plant n is, of course, the marginal plant.  If not, 

then Yn is set equal to Xn and the search for the 

marginal plant must continue.  In either case, the con- 

tribution of this plant to the expected operating cost is 

*4 
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Fnp AE„(Yn) n n 

and to meeting the unserved energy constraint is 

AEn(Y
n) 

Furthermore, once the utilization level of the plant has 

been determined, it can be convolved using (9.6) to de- 

termine the equivalent load duration curve for the next 

plant. 
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C.  Computation of the Shadow Prices 

A large part of the work required to solve the 

probabilistic planning model is involved with computing 

the dual multipliers (9.2) and (9.3) in the subproblems. 

The complexity of this computation is a result of the 

recursive definition of the equivalent load duration 

curves G.(Q).  Since a great deal of computation must 

be invested in computing these functions anyway, it 

might be hoped that they alone would be sufficient to 

compute the desired multipliers.  Unfortunately, this 

does not seem to be the case.  There does not seem to 

be a simple, non-recursive relationship between the 

multipliers and the equivalent load duration curves.  The 

computational method presented in this section, however, 

appears to be reasonably efficient. 

Calculating the dual multipliers in (9.2) and (9.3) 

requires computation of the derivatives 

-=T /    G.(Q;Y1,...,Y1_i)dQ 
3Y3 „i-1 

The computation is trivial for i <_  j  since G.  does 

not depend on Y^  for i <_  j  and U1 does not depend 

on Y3  for i < j.  Hence 
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for i < j 

Now let U stand for any U1 with i > j  so that 

g 
—^U = 1.  Define the function 
3YJ 

U      '     .i-1. H..(U)=-^-/  G. (Q;Y1,...,Y1"1)dQ 
ij      3YJ 0 

for all i > j.  When i = j + 1,  then 

a  u      i     i Hi+l i(U) = "T- / G. + 1(Q;Y
1,...,Y-I)dQ 

- -4*- /p,G . (0,-Y1, . . . ,Yj_1)dQ + -ä» / q .G . (Q-Yj ,-Y1, . . . ,Yj_1)dQ 
3YJ 0 J J 3YJ 0 J J 

a  ü       i     i-i     a  U_YJ       ,      -5 i 
= -*-/ P.G.tQ/Y1,...^3 i)dQ + -^-/   g.Q.(Q;Y1,...,Y3"i)dQ 
SY3 0  3 J 3Y3 _yj   

3 D 

• p.G.(U) + a constant 

because U - Y3 does not depend on Y3.  The constant 

of integration does not depend on U and will cancel 

out when differences are taken below.  Thus 

Uj+1 

3T L   G
J+i

(Q;Y y3)dQ = Vi(i
(üD+1)'Vi,i(u]) 

d
* u3 
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In general, when i > j + 1 

a  u        1     < 
HH + i i<u) = -nr / Gi+l(Q;Y «•••»* >dQ 1+1,3    ay3 o 

Ü      i     • u . 
- -4r / P,G. (Q;Y , . .. ,Y1-1)dQ + -^ / q,G. (Q-Y1;Y1,...,Y1_1)dQ 

3YJ 0 3YJ 0  X 

= PjH.-dJ) + qiHi.(U-Y
1) + a constant 

U1 

V/   G.(Q;Y1,...,Y1"1)dQ = H..(U1) ~H..(U3 

r „i-i 1]     13 

u1 

and -4r /  G, (Q; Y1,. . . ,Y1_1)dQ = H, 4 (U
1) - H.A (U1"1) 

3YJ 0. 

where the constants of integration cancel when the dif- 

ferences are taken.  In summary, the recursive definition 

for the H..  functions is the same as that of the G. 

functions with a different initial condition 

Hi+1,j(U) = piHij(U) + qiHij(U"Y1)  i = 3+1'''•'* 
(9.10) 

V,J,U,=Pft (U) 

The initial condition, which defines H.., ., arises from 
3**1 J 

the "transfer" of Y3  from the j  argument to the zeroth 

argument in the definition of G.+,.  Notice in this 

calculation, no actual integration or differentiation of 

the G-  functions need be performed. 
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Now, the derivatives of the expected cost and unserved 

energy functions can be written 

U-EF(Y) = Fjp.G. (Uj) +   Z        FXp. [H. . (U1) - H. . (U1"1) ] 
-3 3   3 i=j+l    1  13        1D 

(9.11) 

-^r-EGm = - H-.. .(U1) 
dY3 l+i-,3 

The following properties of the H..  functions are 

easily demonstrated by induction using their recursive 

definition (9.10) and the properties of the G.  functions: 

i)  H^dJ) = Pj  for  U < 0 

ii)  Hi-(U) = 0  for  U > Q* + Y1 + ... + Y1"1 - Y^ 

iii)  H..(U)  is monotonically decreasing. 

The recursive definition given in (9.10) would seen 

to be an inefficient way to compute the H.•  functions, 

for two reasons.  First, the definition is actually doubly 

recursive, once on i and once on j; hence there is a great 

deal more work involved in computing the H-•  than in 

computing the G.  alone.  Second, the H.^  functions must 

be computed over their entire domain, even though only their 

values at one or two points are actually used in computing 

the required derivatives; the values at the other points 
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are required only at later stages of the recursion.  In a 

computer program implementing this calculation, each function 

H. • would be represented by a vector giving its values at 

discrete points of its domain.  Although H. , .  could be 

written over H..  in a memory table, there would still 

have to be a separate vector in the table for each j, 

using a great deal of memory. 

There is an alternative to the recursive definition 

(9.10) to compute the H...  Since, as was shown above 

Hj+i,j(u) ^PjV«)* 

applying the recursion for G.+,  gives the identity 

PjHj+lfj(U) +qjHj+lrj(U-Y3) =PjGj+1(U). 

Furthermore, since the recursions for H..  and G.  have 

the same form, applying this recursion successively to 

both sides of this identity gives 

P .H^(U) + q;.Hi;.(U-Y
j) = pjGi(U)  i = j + l,...,I+l  (9.12) 

Now, assuming Y3 > 0 and p. > 0, solving (9.12) for 

H..(U)  gives 
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Hij(ü) = Gi(U) " ^Hij(U'Y"3) (9.13) 

Furthermore, repeatedly applying (9.13) 

H..(U-YD) = G.fU-Y3) - -Jfl..(U-2-Yj) 

q. 
H.-fU-k-Y3) = G.(U-k-Y1) ifl. . (U-fk+D-Y3) 

Pj 13 

Now, if k is defined so that 

;»Y3 < U < (k+1)»Y j 

then     H..(U-(k+l)»Y^) = p. 

by property (i) of the function H..  given above. Hence, 

if Y3 > 0, then 

k   q. A       •      q. k+1 
H..(U) =  E (- -J-) G. (U-A-Y3) + (- -1)   p. 
13     A=0  Pj Pj    3 

(9.14) 

and if Y3 = 0, (9.12) reduces to 

Hij(U) = PjGi(u> (9.15) 

1 
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If Y3  is larger than the interval between points 

in the discrete representation of H..(U)  (as it most 

likely would be), the computation of (9.14) requires fewer 

steps than the computation of (9.10), since (9.14) computes 

points of H..  at intervals of Y3 rather than at the 

interval of the discrete representation as (9.10) does. 

Furthermore, computation of (9.14) requires much less 

memory than computation of (9.10) since it computes H..'U) 

directly from G.(U), so that there is no need to store 

the H..  functions. 

The calculation of the derivatives (9.11) can be 

further simplified by eliminating the need to calculate 

H. .(Ü1"" ).  For, repeatedly applying (9.10) gives 

Hij(üi~1) = Pi-lHi-l,j(üi_1) + 9i-lPi-2Hi-2rj^"^ 
+ •'• 

• qi_1qi_2...qj+2pj+1Hj+1,j<u
j+1) + «i.i«i-2—«jtiW"**' 

Define the probability factors in this expression as 

ei-l,k = qi-r-'*k+l 

or recursively 

*u-l 

8ik =J 3i,k+lqk+l 

(9.16) 
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Then    H..(üi-1)= e^jPjVtP)   •      ?    ßi-1/kPkHkj(ü
k) 

Thus 

I 
-^•EF = FVG.IU1) +   E   FXp [H..(UX) - H..(UX_1)] 
3YJ        J J       i=j+l    -1  13        1] 

I 
-   IF3  -        I        ß,   ,   .p/lpX   (U3) 

i=j+l     *  *»3   * 3D 

1    i        i     i_1 k +   Z   FVIH.-CU1) -   E   0    kP]Hv,(U*)] 
i=j+l   x 13      k=j+l x XfK k  kJ =j+l   x XJ      k=j+l 

I 
E [F3 -   E   0. . .P,FX]p G.(UD) 

i=j+l  x X'3 x J 3 

1    k     * i        k +   E  [F* -   E   0., kp.F lpkH  (U
K) 

k«j+l      i=k+l  X *'* X    * k3 

Define the coefficient 

i    X i A, « F3 -   E   0. , -p.F1 3       i=j+l  X 1,D X 

This coefficient satisfies the backward recursion 

A..^ « F3"1 - Fj + qjAj   j - If. ..,2 (9.17) 

where AT • F . 



207. 

Expanding the definition gives 

Aj • pj - Pj+i
p:l+1 " WV2

F:I+2
 " ••• " «j*i«j+a""qi-ipilpI 

fron which the significance of this coefficient 

can be seen.  It is the expected difference in operating 

cost between plant j  and the next available plant in the 

merit order. 

Thus finally, the cost function derivative can be 

written 

a i     J i -^EF=A.p.G. (U-1) +   I     A.pH..(ir) 
3Y]    D D 3 i=j+l   x *•> 

(9.18) 

which requires computation of H..  at only the single 

point U1.  The expected unserved energy derivative can 

be further rearranged in similar fashion, although there 

would seem to be no computational advantage. 

3Y J
EG=- HI+l,j

(üI) 

*I3
P
DV

Ü)
 "i=^+1

ßIiPiHiD(ü) 
(9.19) 

One final simplification can be made, using the fact 

that Y1 = 0 for i > n in the optimal solution to the 

subproblem.  Hence 

and 

Gi(Q) = Gn+1(Q>  
for i 1 n + 1 

U1 = Un      for i > n 
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From (9.10), it is also true that 

Hi;.(U) m  Hn+1..(U)  for i > n + 1, j < n 

Hence 

-IjEF =  A.p,G.(Uj)   +        E        A.p H      (U1) 
3Y3 J   J   J i=j+l     x   x  13 

X 

+   (     E       A.p.)H     .    .(U11)     for     j   <  n 
i=n+l     x  x    n+1'l 

By the definition   (9.17)   of    A. 

p.A.   = F1  -  Fi+1 +  qi+1A.+1  -  q.A. 

and    PjAj = F1  - q^. 

Hence 

1 I        I_1      i    i+l E       A.p.   - F1  +       E      (F-F1+i) 
i=n+l    x x i=n+l 

" ^ + i»n+l
Ui+iqi+1 ' W 

Therefore 

n 
-ArEF -  A.P-G, (U1)   +        E     AiP.H.-tU1) 

+   (Fn+1-An+lW
Hn+l,j <""> 

*J 
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Now finally, the computation of the shadow prices (9.2) 

can be written 

« = Fn 

\i  = ?LEF - TT JL        for j < n 
3YD      3YD 

n 
= - A. i.p.G.dP) -   l     ^iP^i^U1) 

J J J      i=j+l    *3 

= - A.p.G.(tP) - _J+i A.p.H.^Ü
1) + AnHn+lfj(U

n)  (9.20) 

for  j < n 

XD = 0  for  j > n 

«j = -^jEG-Hi+i,J
<°1' 

(Since u      are required when the subproblem is infeasible, 

n = I in computing these coefficients.) 

M 
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D.  Outline of the Complete Algorithm 

Based on the discussions in the previous sections of 

this chapter, a complete algorithm can be proposed for 

finding the optimal solution to the subproblem and its 

associated dual multipliers.  This algorithm is outlined 

below. 

Initially:  The loading point U is set to zero, 

the equivalent load duration curve is set equal to the 

system load duration curve, and the unserved energy is set 

equal to the total energy demanded, the area under the 

system load duration curve.  The coefficients for expected 

difference in cost, A., are calculated for all plants using 

the backward recursion (9.17). 

For each plant i in the merit order: Entering this 

loop, the current value of the equivalent load duration 

curve is G.  and the current loading point U is U1" . 

If the unserved energy constraint has not yet been satisfied, 

then the expected energy generated by plant i is computed 

by numerically integrating the current load duration curve 

from the current loading point U to the utilization level 

Y . The integration is performed by incrementing Y1 in 

small steps.  If the unserved energy constrai   is satisfied 

at some valu :f    Y  less than or equal to tiv capacity of 



211. 

the plant X , then i is the marginal plant n, and the 

utilization level is left at this value; otherwise,  Y1 is 

set equal to the capacity X1.  The loading point is in- 

creased to U + Y  and the unserved energy is decreased 

by the amount of energy generated by the plant. 

The terms of the shadow prices which depend on the 

current load point and equivalent load duration curve are 

computed and added to the accumulating values for these 

variables.  These terms are 

for i < n, X1 <- -A^G^U1) 

for i < n and all j < i, X3 •*- X1-A.p.H, 
— J i*i i] (U

x) 

for i - n+1 and all j < n, XD «• X^-A H .. . (Un) J   ' n n+1,] 

for i = 1+1 and all j < I, yD •<- HT., . (U1) 
— ±+i/j 

For each j < i, the term H..(U)  is computed using the 

recursion (9.14) or (9.15). 

If the marginal plant has not yet been loaded, the next 

equivalent load duration curve is computed using the recur- 

sion (9.6), and it replaces the current load duration curve. 

The plant index i is incremented and the algorithm repeats 

the computations within this loop, until either the marginal 

plant has been found and loaded or until all the plants in 
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the merit order have been loaded. 

Finally:  If all the plants have been loaded and the 

unserved energy constraint remains unsatisfied, then the 

subproblem is infeasible and the algorithm generates a 

feasibility constraint for the master problem based on the 

multipliers y-*.  Whether the problem is feasible or in- 

feasible, a cost constraint for the master problem is 

generated, based on the multipliers A3. 
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Part Three 

Application of the Deconposition approach 

to Peak-Load Pricing 

I ̂
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Introduction 

The purpose of Part Three is to show how the decon- 

position approach to electric utility capacity plannina 

models, introduced in the previous chapters of this 

thesis, can be extended to the problem of determining 

peak-load prices for electricity.  Peak-load pricing, 

or tirue-of-day pricing, as it is sometimes called, is 

based on the economic principle of marginal cost.  Since 

the cost of generating electricity depends on the load, 

which in turn varies by time of day, users should be 

charged different prices for electricity consumed at 

different tines.  Intuitively, this variation in cost 

arises from two factors.  First, in merit order operation, 

plants with higher operating costs are brought into 

service as the load increases.  Second, increases in the 

peak load may require the purchase of additional generating 

capacity, thus incurring additional capacity costs.  Be- 

cause the highest costs are incurred in periods of peak 

demand, peak-load pricing generally requires a higher 

price in these periods than in off-peak periods when 

the demand is low. 

Peak-load pricing has received a great deal of 

attention in the economic research literature in the 

pact, and recently interest has becone v.oro '•/idesnrear1 

as regulatory bodies in many states move toward 
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implementation of peak-load tariffs.  Implementation of 

peak-load pricinq has been encouraged by a number of 

factors.  Consumer groups have been pressina for more 

equitable electric rates.  Since the "Energv Crisis" 

has brought scarcity and higher prices for manv fuels, 

particularly petroleum, ways have been souoht to encourage 

conservation and more efficient use of these fuels.  Be- 

cause of financial difficulties for the industry in the 

past few years, electric utilities have been trving to 

increase utilization of their existing plants in order to 

reduce their need for nev/ construction.  Teak-load pricing 

has been proposed as a remedy for these problems. 

Traditional work on peak-load pricing has developed 

in two distinct directions (see the recent survey by 

Joskow ).  One approach has emphasized the demand side, 

particularly price elasticity and shifts in the time 

pattern of consumption.  This approach has often used 

simple supply models, with only a single generating 

technology or a single plant.  The other approach has 

emphasized the supply side, particularly estimation of 

marginal costs.  This approach has often used more complex 

supply models, but has de-emphasized demand-related issues. 

More recently, there has been work toward integrating the 

two approaches« 
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The approach taken in this thesis extends previous 

work on peak-load pricincr in two respects.  First, it links 

the determination of peak-load prices to a mathematical 

programming model for long-range capacity planning.  Second, 

it uses the probabilistic version of the capacity planning 

model, presented in Chapter 4, so that the effects of 

system reliability on prices can be considered. 

The linkage of peak-load pricing to a mathematical 

model for long range capacity planning provides a way of 

calculating marginal costs for generating systems with 

many types of plants.  A major shortcominq of some of the 

previous work in peak-load pricing is that planning (and 

optimizing) over a multi-year horizon is not considered. 

Instead, the capital costs of the generating plants 

are put on an annualized basis, and the optimal plant 

capacities and prices are computed for each year separately. 

However, the process of annualizing capital costs does 

not necessarily lead to a correct allocation of the costs 

over the life of the plant.  In a multi-year capacity 

planning model, on the other hand, the plant's capital costs 

are automatically allocated to each year of its life on the 

basis of the shadow value of having its capacitv available 

in that year. For example, in the decomposition models 
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discussed above, the shadov; prices  X   give the econonic 
jv 

value of each plant in each year t.  The optimality 

condition (4.15) written as 

T  t C.  - I     X.     = 0  v/hen  X.  > 0 DV  fc=1  jv jv 

requires that the discounted sun of these benefits derived 

from operating a plant over the planning horizon nust 

equal the initial cost of buildina the plant in order for 

the plant to be built.  Thus, these shadov prices serve 

to allocate the capital costs of the plants according to 
2 

economic value in each year.   In addition, the marginal 

costs derived fron the mathematical programming model are 

forward-looking, rather than embedded, costs, and therefore 

reflect the opportunity costs of supplving electricity. 

Using probabilistic models for peak-load pricing 

gives sone conclusions which are different than those 

reached in the traditional models.  Traditional work 

reached the conclusion that since peak users are the ones 

who determine the need for additional capacity, they 

(and only they) should be charged the marginal capacity 

costs.  More recent work, however, has shov.'n that when 

the system design goal is based on meeting all loads 

with a specified level of reliability, all users should 

be charged a portion of the narginal capacity cost, 
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in proportion to their contribution to the risk of loss of 

load .  Furthermore, since all plants contribute to 

meeting the reliability goal, all plants contribute to 

the marginal capacity cost. 

This part is divided into three chapters.  Chapter 10 

discusses the derivation of marginal cost information from 

the probabilistic capacity planning model,  rirst, a tech- 

nique for calculating the marginal costs attributable to 

different components of the load duration curve is presented, 

This technique is based on calculating the loss-of-load 

probability associated with each component using a recursive 

procedure similar to probabilistic simulation.  Second, 

these marginal costs are derived from the probabilistic 

planning model,so that they can be calculated as a 

by-product of the capacity expansion optimization.  It is 

pointed out that because the functions involved are not 

differentiable at all points, these marginal costs do not 

correspond to the usual definition.  Instead, they represent 

a linear support, or subgradient, of the cost function. 

Chapter 11 discusses, in more rigorous detail, the 

problems associated with the non-differentiability of the 

cost function in Chapter 10.  Techniques from the theory of 

non-differentiable optimization are used to show that 
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solving the capacity planning problem by generalized 

Benders' decomposition produces subgradients of the cost 

function, and the marginal cost expressions given in 

Chapter 10 can be derived from these subgradients. 

Finally, Chapter 12 discusses the use of the capacity 

planning model within a peak-load pricing model.  The 

model proposed brings in the demand for electricity and 

finds an equilibrium betv/een supply and demand,  jv de- 

composition procedure is proposed for solving this equi- 

librium problem, in which the capacity planning model is 

used as a subproblem to calculate supply cost.  The 

subgradients derived in Chapter 11 are used to carry 

cost information from the subproblems into the equilibrium 

problem. 
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CHAPTER 10 

MARGINAL COST CALCULATIONS USING 

THE CAPACITY PLANNING MODEL 

A.  Introduction 

The capacity planninq models discussed in previous 

chapters calculate the minimum cost of satisfying a given 

demand for electricity. One can view these models, there- 

fore, as defining cost as a function of demand.  For 

pricing purposes, it is necessary to know how the cost 

of supplying electricity varies when demand changes. 

Of particular interest are the marginal cost changes 

which result from marginally varying a given demand. 

An advantage of using a mathematical programming model 

to define the cost function is that such marginal cost 

information is readily available in the shadow prices 

associated with the optimal solution. 

This chapter discusses the use of the probabilistic 

capacity planning model, presented in Chapter 4, in the 

calculation of marginal costs.  The calculation has 

three aspects.  First, since the demand for electricity 

in this model is specified in the form of a load duration 

curve, the notion of a marginal change in demand must be 

precisely defined. The load duration curve can be viewed 
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as consisting of a set of discrete components, each 

representing the demand in a single tine interval (usually, 

one hour), arranged in order of decreasing magnitude.  A 

marginal change in the load duration curve can then be 

represented as a marginal change in one of these components. 

Second, the costs of supplying electricity must be 

allocated among the different components of the load 

duration curve.  It will be shown that the correct allo- 

cation is based on the loss-of-load probability associated 

with each component.  A recursive procedure for computing 

these probabilities, related to the probabilistic simulation 

procedure, will be presented. 

Third, the marginal costs themselves must be derived 

from the capacity planning model.  This is accomplished by 

reformulating the model presented in Chapter 4 to explicitly 

include the contribution to cost made by each component 

of the load curve.  The marginal costs can then be 

derived from the optimality conditions for the problem. 

This derivation is somewhat complicated by the 

non-differentiability of the functions involved, a topic 

which is discussed in greater detail in Chapter 11. 

In Section B of this chapter, the recursive procedure 

is presented for calculating the loss-of-load probability 

associate'! with different lew:"'  lcvolr..  This renult is 
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used in Section C to derive expressions for the total and 

marginal cost contributions attributable to different load 

levels.  In Section D, the probabilistic capacity planning 

model is reformulated, on the basis of the expressions 

derived in Section C, to include explicitly the contri- 

bution to cost of each component of the load curve.  Ex- 

pressions for marginal cost are derived and some of the 

difficulties due to non-differentiability are pointed out. 

The method of allocating costs in a probabilistic 

environment presented in this chapter is based on the 

work of Vardi, et al^ .  They have made the important 

observation that, in a probabilistic environment, since 

each hour of the year contributes to the system loss-of- 

load probability, each hour should be allocated part of 

the marginal capacity cost for achieving the system-wide 

reliability goal.  They have presented a method for 

calculating the appropriate contribution of each hour to 

these costs based on its contribution to the loss-of-load 

probability.  However, since their method requires 

enumeration of the outage states, the calculation can be 

costly for systems with many plants.  The reformulation 

presented in Section B of this chapter uses a recursive 

computation which would appear to be more efficient. 
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The paper of Vardi, et al. , assumes that the marginal 

costs, particularly the marginal capacity cost, are known. 

Several authors have discussed the use of mathematical 

2 programming models for calculating marginal cost.  Scherer 

uses a mixed integer programming model to determine the 

optimal capacities for the various types of plants, and 

he calculates the marginal costs from the shadow prices 

associated with the optimal solution.  However, his model 

does not calculate a capacity expansion plan over a 

multi-year planning horizon.  Instead it uses annualized 

capital costs to calculate the optimal plant capacities 

and prices for each year individually.  The work of 
3 

Telson , in which he calculates the costs and benefits 

of increased generating system reliability, is based on a 

mathematical programming capacity expansion model, the 

GEM model, which uses probabilistic simulation to calculate 

system reliability.  However, GEM does not use shadow 

prices to link the probabilistic simulation subproblem 

to the capacity planning linear program, and Telson 

himself does not make use of the LP shadow prices in his 

analysis.  The model presented in this chapter therefore 

unifies several approaches to calculating marginal costs 

for supplying electricity, by using the shadow prices 

from a mathematical programming capacity planning model and 

by using an allocation of coses based on probabilistic cri^jrii 

-*j 
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B.  Hour-by-Hour Allocation of Loss-of-Load Probability 

This section presents a method for calculating the 

loss-of-load prooability (LOLP) attributable to demand 

in a given component (or hour) of the load duration curve. 

The argument used in the derivation is a recursive one 

similar to that used to derive the probabilistic simulation 

in Chapter 4.  The argument is simplest when pursued in 

the domain of load rather than in the domain of time. 

However, the section concludes with a comparison of this 

method with that of Vardi, et al. , which works in the 

time domain. 

Define the function g^(Q)  to be the probability 

of loss of load faced by the i— plant in the merit order 

when the load is Q.  Since there are no plants below 

the first plant in the merit order, when i = 1, loss of 

load is certain if the load is positive and impossible if 

the load is not positive.  Hence define 

rl(Q) = X1  if Q > ° 
\o     if Q ^ 0 

(10.1) 

To find the loss-of-load probability (LOLP) faced by 

the other plants, a conditional probability argument is used, 
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similar to the argument used in probabilistic simulation. 

Given that plant i does not operate, the LOLP faced by 

plant i+1 is the same as that faced by plant i, namely 

gj(Q)•  On the other hand, if plant i operates at level 

Y1, then at least Y1 units of the load will be served. 

The probability that the plants below i will fail to 

serve the remaining Q-Y1 units of load is gi(Q-Y
1) 

(note that  g^fQ) =0  if Q <   0).  Weighting each event 

by its probability gives 

gi+i(Q) = Pigi(Q-Y
1) + qigi(Q) (10.2) 

Equations (10.1) and (10.2) serve to define the family 

g.: (Q)  recursively.  Note that, once all of the plants 

have beer, loaded, the loss-of-load probability of the 

system when the load is Q  is 

gI+1(Q). 

Several properties of the g-  functions follow 

immediately from the recursive definition.  They are step 

functions; that is, the probability of loss-of-load is 

constant on intervals of load 

g±(Q) = {*ff for C0.1 <Q<g 
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Probability 

g:(Q) 

1.  If there is only one plant, and it fails, loss-of-load is 
certain for psitive loads. This event occurs with probability q.. 

Probability 

g^CHr) 

When the first plant operates, ]oss-of-load is certain only 
for loads greater than capacity, X . This event occurs with 
probability p.. 

Probability 

g2(Q) 

Q 

3. The loss-of-load probability with one plant is the sum of these 
two curves weighted by their probabilities. 

Figure 10.1 

Derivation of the Probability function g± 

^J 
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where  o  indexes the intervals. (In fact, there is one 

interval for each outage state.) Furthermore,  g.(Q)  is 

an increasing function of Q, and as noted above 

q±(Q)   • 0 for Q <_ 0. 

By the definition of the load duration function G(Q), 

the load Q lies in the interval between  £„_•) an<^ £ 

during the hours  s between G(£ )  and G(E _.)  (the 

index  s  here is defined so that  s = 0  indicates the 

peak hour and so on in decreasing order of load).  Hence, 

the LOLP faced by plant i in hour s can be defined as 

h^s) - {H>a  for G(Co) < s < G(C0_1)} 

(Actually, since the load duration function G(Q)  may not 

be one-to-one,  h-(s)  must be defined as the maximum ty 

satisfying this condition.)  The derivation of h.(s) 

from g.(Q)  is illustrated in Figure 10.2. Since G(Q) 

is monotonically decreasing, the ordering properties of 

g^(Q)  are preserved but inverted.  When all the plants 

have been loaded, the system LOLP in hour s is 

hI+1(s) 

4 
In their paper , Vardi, et al., present another 

method for calculating this contribution of hour s to 
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Figure 10.2 

Derivation of the Probability Function h. 



229. 

the LOLP.  Their method requires enumerating the outage 

states, and, since the number of outage states grows 

exponentially with the number of plants, actual compu- 

tation is practical only for systems with a small number 

of plants.  The advantage of the recursive derivation 

given above is that the outage states are treated im- 

plicitly and they never need to be enumerated.  Thus, 

the problem of exponential growth is avoided, and com- 

putation is practical for much larger numbers of plants. 

In addition, as the arguments of the next section will 

show, it is convenient to work directly with the g-(Q) 

functions instead of converting them to the time domain 

as h.(s). 
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C.  Determination of Hourly Contributions to Cost and 

Unserved Energy 

When plant i is the marginal plant, the marginal 

operating cost is F .  Given that plant i is operating, 

the probability that it is the marginal plant is the 

probability that the load falls above the point at which 

plant i is loaded and below its utilization level.  More 

precisely, let U    be the (random) loading point of 

plant i, the tota] output of all the available plants 

below i in the merit order (clearly 0 £ U   £ U   ). 

Then given that plant i operates, the probability that 

it is marginal when the load is Q is the probability 

that 

However, the LOLP faced by plant i when the load is Q is 

just the probability that 

U1"1 < Q. 

Hence, given that plant i operates, the probability that it 

is the marginal plant is 

<3±(Q)  -  g^Q-Y1) 
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Since the probability that plant i operates is p., the 

unconditional probability that plant i is the marginal 

plant when the load is Q  is 

which is equal to 

g±(Q) + gi+1(Q) 

Thus the expected marginal operating cost when the load 

is Q is 

I 
Z  FV [g • (QJ-g.fQ-Y1)] (10.3) 

i=l    x     X     X 

Note also that the probability that the load exceeds the 

available system capacity, in which case no plant is 

marginal, is just the LOLP when the load is Q, 

gI+1(Q) 

If the expresssion (10.3) is the marginal operating 

cost when the load is Q, then its integral should be the 

total operating cost.  The proof of this assertion, which 

follows, leads to a useful correspondence with the 
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expression for cost in the probabilistic model derived 

previously, in Chapter 4. 

Define a special load duration function, the step 

function 

G(Q,Q*) = [1  if Q < Q* 
(10.4) 

0  if Q  >  Q* 

where Q*  is the peak load.  For this function, the 

duration of all loads less than or equal to the peak is 

the entire period.  The equivalent load duration curves 

G-(Q,Q*)     are defined by the probabilistic simulation 

recursion, as usual.  An important property of the step 

function is that 

G(Q-Y,Q*) = G(Q,Q*+Y) (10.5) 

and by induction, this property holds for all of the 

equivalent load duration curves G.(Q,Q*)  as well. 

The following property will be useful: 

First Proposition; 

Q* Q* 
/  [g,(Q)-g,(Q-Y)]dQ = /   g.(Q)dQ (10.5) 
0 0 Q*-Y 
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Proof: 

Q* 
/     tg,(Q)-gH (Q-Y)]dQ 
0 1 

Q* Q* 
=  /     g.(Q)dQ -   /     g.(Q-Y)dQ 

0       x 0 

Q* Q*-Y 
-  /     g^QldQ  -   / gi(Q)dQ 

(since    gi(Q)   =  0    for    Q <_ 0) 

Q* 
-  /       g,(Q)dQ 

Q*-Y   x 

It is desired to show that 

E     FV   /      [g. (Q)-g. (Q-Y1)] 
i=l X  0 X 

U1 

dQ 

=     Z     FXpi   I Gi(Q,Q*)dQ 

(10.7) 

i=l „1-1 

where the latter expression is the operating cost as 

derived in Chapter 4, for the step load duration curve. 

This correspondence is established by the following pro- 

position 

Second Proposition;  For all Q* and Y > 0, 

• 
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/ fgi(Q)-gi(Q-Y)]dQ = 

i-l u x+y 
/     G.(Q,Q*)dQ 

u1-1 
(10.8) 

Proof:  The proof is by induction.  When i = 1, 

g±(Q) - /l if Q > 0 

0 if Q < 0 

Q* 
Hence  /  [g.(Q)-g.(Q-Y)JdQ 

0 

Q* r 
• /   gn(Q)dQ - j Q*  if  Q* < Y 

0*-Y X        < 
Y   if  Q* > Y 

Also 

/ G (Q,Q*)dQ = 
0  1 

Q*  if  Q* < Y 

Y   if  Q* > Y 

Hence equality holds when i = 1.  Now assume that (10.8) 

holds for some i.  Then 
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Q* 
!    Igi+1(Q)-gi+1(Q-Y)]dQ 

Q* 
= l\   /  tgi(Q-Y

1)-gi(Q-Y
1-Y)]dQ 

Q* 
+ q. /  Ig,(Q)-g,(Q-Y)JdQ    (by (10.2)) 

1 0 

Q*-Yi 

= P± /    [91(Q)-91(Q-Y)]dQ 

Q* 
+ 9i /  Ig,(Q)-gH (Q-Y)]dQ 1 o  1   x 

since g.^ (Q) = 0 for Q <  0.  Now, by the inductive 

assumption 

Q* U1_1+Y 
/  f9i(Q)-9.(Q"Y)]dQ = /     G.(Q,Q*)dQ 
o 0i-i 

and 

Q^Y1 Ui_1+Y 
/     Igi(Q)-gi(Q-Y)]dQ = /     G.(Q,Q*-Y1)dQ 
o öi-i 

U1_1+Y 
= /      G.(Q+Y1,Q*)dQ 

by property (10.5).  Therefore 
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Q* 
/ [gi+1(Q)-gi+1(Q-Y)]dQ 

U1_1+Y U1"^ 
= P. /      G.(Q+Y1,Q*)dQ + q. /      G.(Q,Q*)dQ 

1  i-1 x  i-1   x 

U Ü 

UX+Y U1+Y 
= Pi /.   Gi(Q,Q*)dQ + q±   I Gi(Q-Y

1,Q*)dQ 

~ u1 u1 

(since U1 - Ü1"1 = Y1) 

UX+Y 
= /   G.+.(Q,Q*)dQ,  which proves the proposition. 

U1 

An extension of the previous proposition gives an 

alternative expression for expected unserved energy: 

Third Proposition: 

Q* °° 
/  gI+1(Q)dQ = / GI+1(Q,Q*)dQ (10.9) 
0 yl 

Proof: 

i*_y
gi+i(Q)dQ = I   ^i+i<Q>-W

Q-Y)JdQ 

(by the first proposition (10.6)) 

UI+Y 
= /    GI+1(Q,Q*)dQ 

u1 

(by the s  .: d proposition (10.8)). 
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Letting    Y  -*• »    gives 

Q* oo 

/  gI+1(Q)dQ = /  UI+1(Q,Q*)dQ 
0 yl 

since 9I+1(Q) • 0  for Q £ 0. 

It should be noted that because the functions 

g^(Q)  are step functions, the integrals in (10.7) and 

(10.9) are not differentiable at all points.  Points of 

discontinuity of g.  correspond to loads for which 

unique marginal costs cannot be defined.  The implications 

of the non-differentiability of these cost functions will 

be discussed in the next section and in depth in Chapter 11, 

• 

•4J 
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D.  A Model for Determinating Supply Cost and Capacity 

Planning 

The capacity expansion planning model developed in 

Chapter 4 can be reformulated, using the cost expressions 

derived in the previous chapter.  This new formulation 

can be used to derive the marginal costs associated with 

the demand components in different hours. 

Consider first the operating subproblem in a single 

year, with plant capacities and demand fixed.  The load 

duration curve can be approximated by discrete components, 

Let Q  be the demand in hour s, where as before, the s 

index s is defined so that 

Qx > Q2 >....> Qs 

As in the previous section, define the step function 

G(Q,QJ = (1  if Q < Qs !,QS) = fl     i 

1°  i if  Q > Qs 

Then the load duration curve for the year can be approxi- 

mated by 

S 
G(Q) =  E  G(Q,Q ) = number of hours in which the load 

s=l     s 

exceeds Q. 
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(Note that this approximation can actually be made arbitrarily 

close to any load duration curve by letting the time incre- 

ment corresponding to demand Q  be small enough and the 

number of increments  S be very large.  Hours are used 

here as the increment for convenience.)  The equivalent 

load duration curve faced by each plant i can be defined 

using the probabilistic simulation recursion as before and 

G. (Q) =  E  G. (Q,QJ . 
1     s=l  x   s 

Using this load duration curve, the usual operating 

subproblem can be written, as in Chapter 4, 

minimi 
IS.    U1 

ze   Z        I  FXp  /    G (Q,Q JdQ 
i=l s=l   1 i-1 1   s 

S 
subject to  I  / GI+1(Q,Qs)dQ < e 

s-1 „I 

0 < Y1 < X1 

where U1 - U1"1 = Y1 

with U°       =0. 

i • !,...,! 

This model can be rewritten using (10.7) and (10.9) as 
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Q, j 5       ~S 
minimize   I       Z     F1/  [g.(Q)-g.  (Q)]dQ      (10.10) 

i=l s=l   0   1    1+J- 

S Qs 

subject to  I /  g-.,(Q)dQ < e (10.11) 
s=l 0   1+J- 

0 < YX < X1 (10.12) 

Using this operating subproblem, the capacity planning 

problem can be written 

TC = minimum    C'X + I     EFt(Yt,Qfc) (10.13) 
X,Yjy . . . i±n,                   t=l 

subject to EGt(Yt,Qt) < et (10.14) 

0 < Y  < 5tX (10.15) 

where the load duration curve in period t is represented 

by the vector of hourly components Qfc, the objective 

function (10.10) is the operating cost function EF*.(Y.»Qt) 

and the unserved energy in (10.11) is represented by the 

function EG.(Y.,Qt). 

This model (10.13) - (10.15) defines a function 

TC(Q,/e,/...,Q_,eT), the minimum (long-run) cost of meeting 

demand Q.  with reliability et in each year t  of the 
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planning horizon.  The reliability level  e.  is included 

as a parameter of demand in order to allow calculation of 

the marginal cost of increased reliability.  When the cost 

function TC  is used in an equilibrium model to determine 

prices, as will be discussed in Chapter 12, the equilibrium 

reliability levels, as well as the equilibrium supply 

quantities,  can be determined.  This approach is equi- 

valent to the inclusion of rationing costs to determine 

reliability, as was mentioned in Chapter 4, and thus it 

represents a resolution of the two approaches - cost and 

constraint - to reliability. 

The purpose of defining the cost function TC  is 

to be able to get some notion of how costs vary with 

cahnges in demand and reliability, the marginal costs. 

However, the function TC is not necessarily differentiable, 

so that marginal costs, in the usual sense, cannot be pre- 

cisely defined.  Nevertheless, the function TC is convex 

(as will be shown in Chapter 11), and therefore, it possesses 

directional derivatives in all directions.  Furthermore, 

at each point it possesses linear support functionals, or 

subgradients, which are used to compute the directional 

derivatives, and which can be used (with care) to stand in 

for the gradient.  Consider first a naive approach to 

finding marginal costs. 



242. 

Suppose an optimal solution to (10.13) - (10.15) has 

been found.  Intuitivaly, the shadow price i:t on the 

unserved energy constraint (10.14) represents the marginal 

capacity cost of the system, since the model would build 

just enough capacity to meet the reliability standard e.. 

Thus, the cost of slightly changing that standard is just 

the marginal cost of additional capacity.  The marginal 

contribution of demand in hour s, Q  , to the unserved 
Co 

energy can be written 

9EGt 
3Qts 

evaluated at the optimal solution (pretending that this 

derivative exists).  The marginal contribution of this 

demand to operating costs can be written 

3EFt 

Thus, the marginal contribution to cost of this demand is 

3EF      3EG 

*«W = 3Q^ + «t WjJ (1°-16) 

Formally differentiating (10.16) gives 
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Mc(Qts) = j   F 
tCgit(Qtt) - 9i+1>t(Qts)] 

+ Vij+iV (10-17) 

which is in the form of the marginal costs given in 

Section B.  Although the functions  EF.  and EG  are 

actually not differentiable, (10.17) gives a valid ex- 

pression for the subgradients of the cost function TC, 

as will be shown in Chapter 11. 

Now, in solving the problem (10.13) - (10.15) by 

generalized Benders' decomposition, T.  will not be 

directly available, since what will actually be solved 

is the master problem 

minimize Z (10.18) 
Z,X 

subject to 
T 

Z > C'X +  ! [EF (Y* Q.) + Ak6. (Xk-X)]       (10.19) 
t=l     C 

I   [EG. (Yk Q ) + uJö1.{X
k-X)-e ] < 0 (10.20) 

teT — t — —  >- — 

X > 0 
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which is a linear program.  However, as will be shown in 

the next chapter, the proper subgradient can be found 

from the shadow prices associated with this master problem. 

k th Let  6  be the dual multiplier associated with the k— 

cost constraint (10.17) and  v  be the dual multiplier 

associated with the k— feasibility constraint (10.18). 

Then it will be shown in the next chapter that a subgradient 

can be computed which has components 

K      Zt 
MC(Qts) = k=i 0k[i=i Flt(gi(Qts?^)-w<w^),] 

+ J\ VV-H(Qts;*t> {10'21) 
it- -L t 

and 

MC(e.) =  £  {eNrJ: + vk} (10.22) 
'  *   k=l    x- 

where  TT.  is the shadow price on unserved energy computed 

in the subproblem for period t at iteration k.  The 

notation 9j(Q»Xt)  indicates that the functions g.  are 

computed using the optimal solution Y  to the subproblem 

in period t at iteration k. 

It should be noted that the subgradient thus computed 
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is not unique and therefore does not correspond to marginal 

cost in the usual sense.  However, in Chapter 12 it will 

be shown that such a subgradient can be used in place of 

marginal cost in computing peak-load prices. 
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CHAPTER   11 

SOME   TECHNICAL   ISSUES 

A.  Introduction 

This chapter discusses more rigorously some of the 

results presented in the previous chapter.  In the previous 

chapter, formulas were given for the marginal contribution 

to cost associated with demand in each hour and with the 

reliability (unserved energy) standard in each period. 

It was noted that because of the non-differentiability 

of the functions involved, marginal costs calculated are 

not necessarily unique and so do not correspond to the 

usual notion of marginal cost.  Instead, they correspond 

to components of the subgradient of the cost function. 

This chapter presents a rigorous derivation of these 

formulas. 

Section B derives some results on subgradients for 

general mathematical programs.  The discussion considers 

a function v(y_)  defined as the optimal value of a 

mathematical program which depends on a vector of parameters 

y_.  It is shown that subgradients of this function can be 

derived from the shadow prices associated with the 

optimization.  Two cases are discussed.  First, when the 
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objective function and constraints of the program are 

differentiable, these shadow prices are derived from the 

usual Kuhn-Tucker optinality conditions.  Second, when 

the objective function and constraints are not differ- 

entiable, they are approximated by their subgradients. 

An algorithm similar to the Generalized Benders• al- 

gorithm discussed in Part Two is used to generate the 

pieces of this approximation, and the problem is solved 

by solving a sequence of linear programs which contain 

the subgradient approximation.  Then the reauired shadow 

prices and the subgradient of v can be derived from 

the dual solution to the optimal linear program. 

In Section C, these general results are applied to 

calculating a subgradient of the cost function TC defined 

by the capacity expansion planning model.  It is shown 

that solving the operating subproblems to generate a 

Benders* cut for the master problem is essentially the 

same as determining a subgradient approximation to the 

objective function and constraints of the capacity planning 

model.  Furthermore, these subgradients correspond to the 

optimal shadow prices of the subproblem.  These shadow 

• rices are calculated by the formulas derived in 

...apter 9 which, though originally derived from the 
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Kuhn-Tucker conditions, remain valid in the non-riifferentiaMe 

case.  The elements of the subaradiants corresponding 

to the components of the load duration curve and to the 

reliability level arc derived from the rarginal cost 

formulas given in Chapter 10.  The generalized Benders' 

master problem then corresponds to the subgradicnt 

approximation problem of Section P.  Finally, it is shown 

how to compute a subgradient of the cost function TC 

using the shadow prices in the optimal master problem 

and the subgradients with respect to demand and 

reliability generated by the subproblems. 

The derivations in this chapter are based strongly 

1      2 .3 
on the works of Geoffrion , Hogan , and Shapiro . 
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B.  Some General Results 

Consider a general parametric mathematical program 

v (y_) = minimum f (x,yj 

(1 

subject to g(x,yj <  0 

where x is an n-dimensional vector, y_ is k-dimensional, 

n   k f maps R x R  into the real numbers and g maps 

Rn x R  into Rm.  This program can be written 

v(y) = minimum f(x,w) 
x,w 

subject to g(x,w) <_ 0 (11.2) 

w = Y. 

where w is a vector of auxiliary variables.  Clearly, 

this auxiliary problem has the same optimal solution as 

the original.  Let X    be a vector of dual multipliers 

associated with the original constraints g(x,w) £ 0 and 

let %    ke tne vector of multipliers associated with the 
/\ A. 

auxiliary constraints w = y_.  Assume that for each y 

for which the program has a feasible solution, the optimal 

solution  (x,w)  and the optimal multipliers (X,y)     satisfy 

the global optimality conditions (Theorem 2 in the Introduction 

to Part Two). 
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Even if it is assumed that f and g are differentiable 

everywhere, it still cannot be guaranteed that v (y)  is 

differentiable everywhere.  A simple example is provided 

by the linear program in which f (x,y_) • c'x and g(x,y_) 

= y_-Ax.  The values of y_ at which the optimal basis 

changes are points where the function v(y_)  is not 

dif ferentiable.  However,  v(y_)  does possess linear 

support functionals, or subgradients, and directional 

derivatives in all directions.  A subgradient at a point 

y_ is a vector y  such that for any other point y_ 

v(y_) > v(£) + i(y_-£) (11.3) 

If v is differentiable at y_ then y is unique and 

equal to the gradient of v. However, if v is not 

differentiable at v., then y_ is not unique; the set of 

all subgradients at y_ is called the subdifferential, 

denoted 3v(;y). The directional derivative of v at y 

in the direction Ay can be found by solving the mathe- 

matical program 

v(y|Ay) = maximum yAy 
(11.4) 

subject to j £ 3v(y) 

It is not difficult to show that there is a relation- 

ship between the dual multipliers of (11.2) and the 
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subgradients of v. 

First Proposition:  For a given point v., H    X *-s 

the optimal multiplier vector on the auxiliary constraints 

in (11.2) and the primal and dual solutions satisfy the 

global optimality conditions, then y_ is a subgradient 
A. 

of v at y_. 

A  A 

Proof:  Let y_ be any other point.  Let  (X/W) 

be optimal in (11.2).  Then 

/V A   A. 

v(y_) = f(x,w) 

By the global optimality conditions 

A At A   A 

v(y_) = minimum f (x,w) + Xg(x_/W) + y_(y_-w) 
x,w 

where \ and % are the optimal dual multipliers in 

(11.2). By the Strong Duality Property (Theorem 3 of 

the Introduction to Part Two), 

v(y_) = maximum minimum f (x,w) + Ag(w,w) + y (y_-w) 

_> minimum f (x,w) + Xg(x,w) + Y(y_-W.) 
x,w 

A   A r*.      /v   A A        A   A   A 

= f(x,w)  + Xg(x,w)  + x C3C"3C+3CrJ£) 

A,        A ä A 

= f(x,w)   + x(y_-y_) 
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(by complementary slcakness) 

= v(y_) + x(y_-y_).  | I 

Notice that this proof does not use any convexity 

properties.  However, subgradients are associated with 

convex functions, and therefore it might be suspected 

that v is convex. 

Corollary:  v(y_)  is a convex function. 

Proof:  Let y_,  and y_- be anY two points and let 

y_ = ay, + (l-a)y_2 where 0 <  a <_  1. 

A /K 

Let y be a subgradient of v at £•  Then 

A        A        /\ A.        /s, 

v(y_x) > v(y_) + ify^-yj = v(y_) + x<l-a) (Zi"Z2> 

and 

A        A        A A        A 

v(y_2) > v(jr) + l(y_2-y_) = v(£) + x(-a) (V^-y^) . 

Hence 

A 

av(y_x) + (l-a)v(y_2) > v(y_) 

which proves that v(y^)  is convex. | | 

Because of this First Proposition, it is sufficient 

to find an optimal dual solution to (11.2) in order to find 
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a subgradient.  However, to find directional derivatives 

it is necessary to construct the subdifferential, the 

set of all subgradients.  This task is somewhat more 

difficult. 

When f and g are differentiable and convex, 
4 

Geoffrion has shown how to construct the directional 

derivatives.  In this case the Kuhn-Tucker conditions 

characterize the optimal dual solutions-  The Kuhn-Tucker 

conditions for (11.2) are 

i)  Stationarity 

M+AÜ=o 

3f   , 3g      n 

ii)  Complementary Slackness 

Xg(x,w) = 0 

(the gradients ^—, |^, |— and l|[ are evaluated at the • 3x  3x  3w      3w 

optimal solution to the problem).  Then, the mathematical 

program for the directional derivative (11.4) becomes 

v(yjAy_) = maximum (-r- + x|^)*Ay_ 
X>0    3w  "3w 
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subject to    ||+A||=0 (11.3) 

xk = 0    if    gk(x,w)   < 0 

where X. is the k— component of X, and all gradients 

are evaluated at the optimal solution to (11.2). Notice 

that this problem is a linear program. 

When f and g are not differentiable (but are 

still convex), the situation is more complicated because 

the Kuhn-Tucker conditions no longer characterize the 

optimal dual solution.  The directional derivatives of 

v must now be expressed in terms of the subgradients of 

f and g.  This can be approached by considering how 

the problem (11.2) can be solved. 

Suppose (11.2) were to be solved by a subgradient 

approximation algorithm similar to the generalized 

Benders' algorithm discussed in previous chapters.  The 

objective function f(x,w)  can be represented by its 

subgradients.  Let £ = (il'la1  be a sub9radient of f 

at  (x»w).  Then for any  (x,w) 

f(x,w) > f(x,w) + ix(x-x) + L2(w-w). 

Furthermore, since this relationship holds with equality 

when  (x,w) = (x,w), 
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^ A A 

f(x,w) = max f(x,w) + £.(x-x) + ?-(w-w) (11.6) 

(x,w) 

Similarly, each constraint function g,  can be represented 

by its subgradients.  Let  n_k = (nlk,n2k]  be a subgradient 

A  /s. 

of gk at  (x,w) .  Then for any  (x_,w) 

*   A A A •S. A. 

gk(x,w) > gk(x,w) + nlk(x-x) + n2k(w-w) 

A  A        /\ ^       ^ ^ 

and gk(X/W) = max gk(x,w) + n_lk(x-x) + n.2k (w-w) . 

(x,w) 

Then gk(x,w) £ 0  if and only if 

A   A A A ^ y\ 

0 _> max gk(x,w) + nlk(x-x) + n2k (w-w) 

(x,w) 

or equivalently 

AA/\ /\        y\ /\. A,  A 
0 1 9k(x/W) + nlk(x-x) + ji2k(w-w)  

for a11  (x#W). 

By collecting all of the component subgradients into a 

matrix rj_ = [j_ ,ru] / this condition can be written 

A   A A. ^ A A   A 

g(x,w) + jn^x-x) + _n2 (w-w) <  0 for all  (x,w)  (11.7) 

Then problem (11.2) can be written in the form 

I 
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v(y_) • minimum z (11. 8) 
z,x,w 

^  A        A        A        A        A                       /\/v 

subject to z > f(x,w) + Ci(x-x) + £5^-"-^ for a11 (£'!£' (11. 9) 

/^  ^        A       ^        /\        ^                    >v/\ 

0 >_ g(x,w) + n-,(x-x) + n2(w-w) for all (x,w) (11. 10) 

w = y_ (11. 11) 

In practice this problem would be solved by the re- 

laxation strategy used to solve the generalized Benders' 

master problem.  Given a set of previous trial solutions 

(x /W1)  and their associated subgradients  (5 ,n1)r with 
* 

i = l,...,n, a relaxed version of the problem is solved 

for a new trial solution.  The relaxed problem is the linear 

program 

minimize z (11. 12) 
z,x,w 

subject to z > ffx^w1) + ^(x-x1) + j^^"•1) i*"l». . . ,n (11. 13) 

0 ^ g(x ,w ) + n, (x-x ) + _n_ (w-w ) i=l,. • • $ X 1 (11 14) 

'                                                 *L = y_ (11. 15) 

Since the relaxed problem omits many of the constraints 

of the original problem, the new trial solution may not 
i 

be 

feasible in the original problem (11.8) - (11.11).  Thus 

> 
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it is necessary to determine for the new trial solution 

if any constraint of form (11.9) or (11.105 is violated, 

and if so, new constraints must be included in the relaxed 

problem.  In order to determine which of the constraints 

not already included in the relaxed problem are violated 

by the current trial solution, a subproblem would be 

solved and this subproblem would also generate the required 

subgradients.  This subproblem is analogous to the operating 

subproblem of the capacity planning model, derived pre- 

viously.  The details do not need to be disc  sed here. 

Suppose that after a finite number of trial solutions 

have been generated, one is found which is optimal in 

the original problem.  (In general, finite convergence 

cannot be guaranteed; however, finite convergence can be 

proven when f and g are piecewise linear, as they are 

in the capacity planning model to be discussed in the next 

section.  It also seems likely that the argument can be 

generalized to the case where convergence to within some 

tolerance  e  in a finite number of steps can be proven.) 

Let n be the number of iterations required and let 

(11.12) - (11.15) represent the relaxed problem which 

yields the optimal solution.  Let 8  be the dual 

multiplier on the i  constraint (11.13), v  the multiplier 

on (11.14) and  ¥  the multiplier on (11.15).  Since 

(11.12) - (11.15) is a linear program it is equivalent 

•— •*- 
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to the dual problem 

v(£) = maximum { I     61[f (x1,^1) - S-jX1-^- ' + 

6,v,x  i=l 

E v1[g(x1,w1) - n^-n^w1] -IZ}   (11.16) 
i=l 

subject to 

n 
I     e1 = 1 (11.17) 

i=l 

Z (sM + /n!) = 0 (11.18) 
i=l •"• 

I   O1^ + vxnh   - Y = 0 (11.19) 
i=l   ' * 

8 , v1 > 0,  Y  unrestricted in sign. 

By the discussion given above,  y_ is a subgradient 

of v(y.)  if and only if it is an optimal multiplier 

vector for (11.12) - (11.15), or in other words, if it 

is part of an optimal solution to (11.16) - (11.19). 

However, by (11.19) 

n . . 
X = Z   {9XSa  + * Zb> 

i=l   z     * 
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where 6  and v  are the shadow prices on constraints 

(11.13) and (11.14) respectively. 

This procedure for finding v  simplifies considerably. 

The problem (11.12) - (11.15) is equivalent to 

minimize z_ (11.20) 
z,x 

subject to z > f(x ,yj + i^x-x1)  i=l,...,n    (11.21) 

0 > gtx1,^) + ^(x-x1) (11.22) 

As constraints are generated in this problem the sub- 

gradients j[_ and r[-,   for the second arguments of f 

and g, are also calculated.  When the trial solution 

generated by this relaxed problem finally yields an optimal 

solution to the master problem, the optimal multipliers  8 , 

on (11.21), and v , on (11.22), are used to calculate 

n   . . 
Y = s (e1^ + vV) 

i=l  ~* * 

It should be noted that this subgradient is not unique, 

and that in order to compute directional derivatives, the 

subdifferential must be computed for use in (11.4). 

The method proposed here can be extended to compute the 

subdifferential, but it will not be pursued here. 
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C.  Application to the Capacity Planning Problem 

Recall from Chapter 10 that the capacity planning 

problem to be solved is 

T 
TC(^L,ex,...,QTreT) = minimum C'X+ I ^t'lfQt'   (11.23) 

_'_i'* * *'XT    t=i 

subject to EG
t(It»Qt) 1 

e
t    t = 1,...,T (11.24) 

0 < Yt < 6fcX (11.25) 

and it is desired to find a subgradient of TC.  In order 

to apply the discussion of the last section, it is necessary 

to associate the generalized Benders' master problem for 

this model with the subgradient approximation problem 

(11.12) - (11.15) of the previous section.  It is also 

necessary to identify the subgradients of the functions 

EF.  and EG..  When these correspondences have been 

made, then the required subgradient can be calculated from 

the shadow prices associated with the optimal master program, 

rather than from the nonlinear program (11.23) - (11.25) 

itself. 

The correspondence between the generalized Benders' 

master problem and the subgradient approximation problem 

is made by showing that solving the operating jubprobleir.s 
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generates subgradients of the objective function (11.23) 

and of the unserved energy function in (11.24). 

Define the operating subproblem (10.10) - (10.12) 

in the following parametric fashion 

I  S  Ls 
EF*(X,Q,e) = minimum  I       I     j     [g.(Q)-g.  (Q)]dQ   (11.25) 

-J.    YI i=l s=l 0   x    1+i 

S  Ls 
subject to   1     j       gI+1(Q)dQ < e (11.26) 

s=l 0 

0 < Y1 < X1   i = 1,...,1 (11.27) 

Ls = Qs      s = 1,...,S (11.28) 

By the first proposition of the previous section, if optimal 

dual multipliers can be found which satisfy the global 

optimality conditions, they give a subgradient of the 

function EF*.  The strategy here, as in Chapter 8, will 

be to propose optimal primal and dual solutions for the 

problem, and then to show thay they satisfy the global 

optimality conditions. 

The optimal primal solution is the same as was used 

before 
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**-, «-» 

Y1 = J X1    i < n 

\ 0 i > n 

where the marginal plant index n is defined so that 

s    Qs 
E /' gn+l(Q)dQ 3=1 0  n+i 

= e 

with 0 < Yn <  Xn.  The dual multiplier TI  the unserved 

energy constraint (11.26) is equal to the cost of 

operating the marginal plant 

* = Fn. 

Ai The shadow prices  X  on the capacity constraints (11.27) 

are defined by the formula (9.20) given in Chapter 9, 

$  =f-A.G.(Uj)-  E  A.p.H..(UX)+A H ., . (Un) for j < n 
J J     i=j+l     J       n+x,j 

0    for j >_ n 

(Since the functions in this problem are not differentiable, 

the Kuhn-Tucker conditions cannot be used to find \^. 

However, the validity of the formula given above will be 

established below).  Finally, the shadow prices the 

identity constraints (11.28) 

MT 
• 
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n  i  i-1 
Ye =  E (F1-F1 X)g.(Qc)     s - 1,...,S (11.29) 
s   i=l X     S 

(where F° = 0). 

It is necessary to show that the proposed optimal 

solution Y = Y  and L = Q  minimizes the Lagrangian 

of the problem 

L(Y,L,X,Y,TO = 

I  S   .  Ls S  Ls 
I       Z F1 /  [g. (Q)-gi + 1 (Q)]dQ + IT I     f       9-.. (Q)dQ 

i=l s=l   0   1     +± s=l 0   l  L 

I S 
+ Z     X1(Y1-X1) +  Z  Yo(Qa-lO (11.30) 

i=l s=l  S  S  S 

when the optimal dual multipliers are used 
* A /v 

IT = TT , _X = 2i» X = X*  This is the same problem which was 

faced in Section B of Chapter 8; however, the proof given 

there used the differentiability of the Lagrangian to 

define the multipliers, which cannot be done here.  The 

argument given below is therefore based on a subgradient 

property of this Lagrangian, given in the proposition below. 

Q* 
Define w. (Q^-Y1, . . . ,Y1_1) = /  g. (0,-Y1,. . . fY

1-1)dQ 
0 

and define H..(U,Q*)  by the recursive formulas (9.10) 

given in Chapter 9. 
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H<4.1 4<üfQ*) = P,H . (U,Q*) + q H, .(U-YX,Q*)  i = j + l I 

H.+, ,(U,Q*) = p.G (U,Q*) 

where G.(U,Q*)  is the equivalent load duration curve 

derived from the step function load duration curve 

G(Q,Q*) = I 1  if  Q < Q* 

0  if Q > Q* 

Second Proposition;  For any values Q* and 

Y1    Y1"1 

w, (Q*?Y1,...fY
i"1) .» w. (QjY1,...,^1-1) 

A  A 

. ( 
—     X 

i-1 
+ gH (Q)(Q*-Q) -  E  H..(UX-1fQ)(Y

j-Yj), 
j=l  1D 

where U1"1 = Y1 + ... + Y1"1 and g.  and H..  are 
l       l j 

"1    Äi-1 defined using Y ,...,Y 

Proof;  The proof is by induction on i.  When 

i = 1, w, (Q) • max (0,Q).  It is to be shown that 

(11.31) 

w^Q*) > w1(Q) + g1(Q)(Q*-Q) 

There are four possible cases: 

• 

i)  If Q* > 0 and Q > 0, then w1(Q*) = Q* and 
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y\        A* 

wx(Q) + g-^QMC^-Q) = Q + 1» (Q*-Q) = Q*.  Hence 

wx(Q*) = w-^Q) + g1(Q)(Q*-Q). 

ii)  If Q* <_ 0  and Q < 0, then w1(Q*) = 0  and 
A*. A* r\ ^ 

Wj^Q) + g1(Q)(Q*-Q) = 0 + 0«(Q*-Q) = 0.  Hence equality 

holds once again in (11.31). 

iii)  If Q* > 0 and Q <_  0, then w,(Q*) = Q* and 

w^Q) + g1(Q)(Q*-Q) = 0 + 0« (Q*-Q) = 0.  Since Q* > 0, 

the inequality (11.31) holds. 

iv)  If Q* <   0  and Q > 0, then w1(Q*) = 0  and 

w-^Q) + g^OMO^O) = Q + 1« (Q*-Q) = Q*.  Since  0 > Q*, 

the inequality (11.31) holds. 

Now suppose the inequality holds for some i.  It 

must be shown that it holds also for i+1. 

W4<l>1 (Q^Y1,...,*1)   = 'i+1 

P4Wi(Q*-y1>¥1,...,T1"1) 

+ qiwi(o*>Y1,...,yi"1) 

A /K    . Ak 

>  Pi{wi(Q-Y1;Y1,...,Y1"1)   +  g^Q-Y1) (QO-Q-Y^Y1) 

1-1 Ai-1   Ä   A< -i   ^4 
-     E     H. .(IT   -"-»Q-Y1) (YJ-Y3)} 

j=l     1D 

: 
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A   V\ « 

+ qi{wi(Q;Y
1,...,Y1"1) + q^(Q)(Q*-Q) 

--      Äi-1 A   i Ä-i 
-  E  H. .(IT ",0) (YJ-YJ) 

5-1 1D 

- w^CQiS1,...,?1) + gi+1(Q)(Q*-Q) 

- p.g.(Q-Y1)(Y1-Y1) - I      (pHH .(U1"1,Q-Y1) 
ll j=l     XJ 

+ qiHij(U
1"1,Q)}(Yj-Y:') 

Now, it was shown in Section 10.C that 

Gi(Q,Q+Y) = G±(Q-Y,Q), 

and H •.:  inherits this property as well.  Furthermore, 

g-^Q-Q) = Jl if Q-Q>0 

0 if Q - Q < 0 

1 if Q < Q 

0  if Q > Q 

G^Q.Q) 

and by induction 

g^Q-Q) = Gi(Q+U
1"1,Q). 

Therefore 
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*       1 

p.g. (Q-Y1) (Y1-^1)   -      Z      (p.H. .(U1"1,^1) 
ll j=l D 

+  qiHij(U1"1,Q)}(Yj-Yj) 

=   -   p  G. (U\Q) (Y^Y1)   -      E      {p.H..(u\Q) 
11 j=l 3 

/v   • Ä 

+  qiHij(U1-Y:L,Q)}(Y:,-Y:,) 

i 
=  -     Z     H. + ,    . {U\0) (Yj-Yj) 

j = l     X   •L':I 

and  therefore 

Wi+1(Q*»Y1
f...,Y

1)   > W^KJiY1,...,*1) 

+  gi+1(Q)(Q*-Q)   "     Z     Hi+1<j(U
1,Q)(Yj-Yj).    || 

This proposition gives a subgradient relationship 

for the function 

/ g,(Q;Y ,...,Y  )dQ 
0  x 

The next proposition, similar to one proved in 
/>k j  *. 

Section B of Chapter 8, shows that Y1 = Yx, L = Q_ s   s 

minimizes part of the Lagrangian. 

Third Proposition:  The proposed optimal solution 

minimizes the function 

 L-L 
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L                                                             L 
n        .        s                                               /s       s 
I     F1   /      [g. (Q)-g. ., (Q)]dQ +  TT   /       g        (Q)dQ 

i=l          0          *            x   L                           0          n+X 

• 

,                                        n    *.     .      . 
+     I     A1(Y1-X1)   +  ytQ-L) 

i=l                                 s     s     s 
(11.3 

Proof;  Since  ir = F , this expression can be 

written 

n   .  . ,   s n A.  .  . 
Z (F^F1 X) /  g. (Q)dQ +  E  X1(Y1-X1) + Yc (Q "LJ 

i=l 0  1       i=l s s s 

=  E (F1-F1"1)w. (L ,-Y1 ,Y1_1) +  E A^Y^X1) + Ya (Q..-L J 
i=l x s i=l s s s 

By the preceding proposition, for arbitrary values of Y1 

and L , and since F1 > F1  , 

E (F1-F1"1)w. (L ,-Y1,. .. ,Y1"1) > 
i=l X  S ~ " 

E (F1-F1"1)wi(Q_;Y
1 Y1"1) +  E (F^-F1-1) g. (Qc) (L -Q) 

i=l x  s i=i l  s   s  s 

-  E (F^F1"1) E  H. .(U1"1,Qe) (Y
j-YJ) 

i=l        j=l  x3 s 

Now the final term is 

• 
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i-1 
I    (Fi-Fi_1) E  H,.(U1_1,QC)(Y

j-Yj) 
i=l j=l  13 

n-1  n    .  i_,     /si_1      . ~. 
=  E    E  (P1-P* X)H. .(U1 X,Q) (yJ-Y-1) 

n-1   3    4  4., A. 
=  E   E  (F^F* x){ß    .p G. (U^QJ + 

j=l i=j+l 1"i':, D 3    S 

i-1 

k =D
E
+1 

ßi-i,kPk
Hkj(Gk'Qs)}{YJ^J) 

(as was shown in Chapter 9. ß.,  is defined in (9.16)) 

n-1       n .     i_1 ^. .   A. 
=    I I      (F -Fx   A)ß.   ,    .p.G. (UJ,Q  ) (Y-'-Y-') 

j=l  i=j+l l  1,3   J   ] s 

n-1    n-1 n .   , *, .   * . 
+     E E E      (F1-F1_J-)ß.    .      pH..(UK,Qj (Y-'-Y3) 

j=l k=j+l  i=k+l i-i,K K K] s 

Now 
n i     i-1 E      (FX-FX   ^(J p 

i=k+l X   i,K  K 

=   iX/'^i-l^^ik^k-^Pk  +  FnVl,kPk 

• .J+1
FiPißi-i,kPk - pkpk 

+ FVi,kPk 

1   i k 
=  i=k+l

F Pi6i-l^Pk  -  F Pk 

- 
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~ i=*+1
FVi-l,kPk + »%-l.lA 

= " AkP): + AnPk8nk 

(by the formulas given in Chapter 9) 

Hence 

n   i  i-1 i_1    ~i-l      i Äi E (F -F1 X)   I   II.. (IT  ,0 )(YJ-YJ) 
i=l        j=l XJ       S 

ä .y-&jpj+ VjVrj("j'°s)(YJ^j) 

+
 J, wA^-'kPk + VkWHkj<rik'V<YJ-*j> 

J — J.   K—]+J. 

=  -     E   {A .p.G.(Uj,Q   )   +        E     A.p.IL     (Uk,0   )}(Yj-Yj) 
jssl     3   D   3 s k=j+1  K  i.  hj s 

+ An "f/P^njV^'0»5   + VJ+ Pkßnknkj(rTk'ns
)}(YJ-YJ) 

=  -     £   {A  p  G. (Uj,Q   )   +        E     A.p  H      (Uk
rO   )}(Yi-Yj) 

j=1     D   D   3 s k=j+1   KKK] s 

n-1  A. .     .   A . 
=    E     A-MY^-Y11) 

i    i-1 A 

Hence,   finally,   since     (F -F       )g.(Q  )   = y 
X 5 5 
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Z   (Fi-F1"1)w.(L   ;Y1,...,Y1"1)    > 
i=l X     S 

Z   (Fi-Fi"1)w4(Q_fY1,...#Yi"1)   + Y.(L -QJ 

n     Ä.      .A. 

-     Z     JT(Y  -Y1) 
i=l 

Now,   therefore,   for  any    L   ,   Y   , ...,Yn, 

L L n s A       s 
Z     F1   /      lg. (Q)-g.+1(Q)]dQ  +   ir   /     g        (0) do 

i=l 0 X Z  X 0       n   •"• 

+    Z     ^(Y^X1)   + y.(Q-h) 
i=l s     s     s 

n       .     Qs .    Qs 
>     Z     F1   /      [q. (Q)-g.    , (0)]dO  +   H   /     gn+1(Q)dQ 
- i=i      o       x        1+J- o     n •*- 

-     Z     X1 CT±-5i)   +     Z     X^Y^X1)   +  Y„tt  -Q„) 
i=l i=l s     s     s 

+ WV 
n       4    

Q
s .    Qs 

=    Z    F1
 /     [g, (Q)-g..,(Q)]dO + * /    g^tOdQ 

i=l        0        x x+x 0      n+x 

n     MI   *i 
+     Z     X1^1-^1) 

i=l 

which is the value of the function (11.32) evaluated with 

Y • Y  and L = o .  Hence these values minimize the n   s 
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function. 

An argument sinilar to the one given in the second 

proposition of Section 8.B shov/s that Y1 = 0  for  i > n 

must be true at a local minimum of the Lagrangian.  fince 

the Lagrangian then reduces to the function (11.32) aiven 

above, the proposed optimal solution is the minimal 

solution and thus the proposed primal and dual solutions 

satisfy the global optinalit*' conditions.  Then, by the 
ä    yv    Ä 

first proposition of the previous section, X^, y, TT  form 

a subgradient of EF*(X,n,e)  with respect to  X, Q, and e, 

If the subproblem (11.25) - (11.28) is infeasible 

for the given values of X, 0, e, then the solution 

generated is 

Y1 = X1  for  i = 1,...,I 

ir = F* 

Äi AI 
»  " HI+l,i

(U > 

and the shadov; price on the identity constraint is 

cs " 9I+1(QS). 

The second proposition, above, also shows that for any 

Lg , Y ,... ,Y 
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Ls       1 

0  x 

Qs 
/ gI+1(Q;Y

1,...,YI)do + gJ+1(Qg)(Lg-Qs) 

and thus, in this case also, the subproblen multipliers 

give a subgradient. 

Now, the generalized benders* master problem for 

(11.23) - (11.25) is 

minimize   Z (11.33) 
iif _ 1 ' *' • '—.T 

T 
subject  to  Z   >  C'X +     E     EF.(Y*0.)   +   X*6.(Xk-X) (11.34) 

mm   mm   mm ^ J^     _•£     —tZ *""t     mt    mm        mm 

Yi   =    i f • • • r K 

E  k   [EGt(Y^,Ot)   + J^«t(3^-X)-et]   < .0 (11.35) 

X  >   0. 

k k If the subgradients £.  and n,  of the problem 

(11.20) - (11.22) in the previous section are associated 

as 
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k   T  k 

TU  • E ,. y.6 
terK _t t 

and if the variables x are associated with X and 

v_ (or w) v;ith £T»•••»PT and e,,..., e,  then 

(11.33) - (11.35) takes the general form discussed in 

the previous section, (11.20) - (11.22).  Then, in order 

to calculate a subgradient of TC, it is necessary to 

V k 
identify the subgradients £-"  anc* Ho» ^or ^e varia^les 

Q.  and e..  From the discussion given above, it is 

clear that the component of £,  associated with Q   is 

Yts = ii1(
Flt-Fl"1't^i^ts^t> 

and with e.  is  TT.  (which is the operating cost of the 

marginal plant in period t at iteration k).  The component 

of n0 associated with O.   is —£ ts 

4" Wöts'& 

k and with efc is 1.  (The notation g. (Q,y )  means 

that g.  is calculated usinq the values of  Y from 
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the k  iteration, in period t.) 

Finally, if  0  is the shadow price associated 

with the kth constraint (11.34) and vk with the 

k  constraint (11.35), then the result of the previous 

section shows that a subgradient of TC is formed as a 

weighted combination of these subgradients.  "he com- 

ponent of this subgradient associated with Q.       is 

K 

k 
^nF^-F1-1'^.^;^)) + Vkg  +1(0ts;^)}r  (11.36) 
-l i-=i t 

and with  e   is 

I {8kir£ + vk} (11.37) 
k=l   K 

Computationally, these formulas require that, as the 

subproblems are solved at each iteration k, the functions 

g^ (Q;Yfc)  also be computed and saved.  VThen the generalized 

Benders' master problem has converged, the shadow prices 

k       k on the constraints  6  and v  are used to compute the 

subgradient components given above.  Chapter 12 will 

discuss the use of this subgradient in computina peak-load 

prices. 
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CHAPTER  12 

CALCULATING  PEAK-LOAD  PRICES 

A.  Introduction 

The previous chapters of Part Three have presented 

a technique for using the probabilistic capacity expansion 

planning model to calculate marginal costs associated with 

the demand for electricity at different times.  However, 

it has been noted by several authors (see, for exarrole, 

Crew and Kleindorfer ) that it is not enough to consider 

system planning and pricing separately.  The demand for 

electricity at different times depends on the price 

charged, and planners must consider how price will affect 

demand.  The capacity expansion and pricing decisions must 

be made jointly in the context of price-elastic demand. 

This chapter presents an approach to integrating the 

marginal cost information derived in the previous chapters 

into a pricing model. 

The model presented in this chapter is not intended 

to consider all the aspects of the peak-load pricing 
2 

problem which have been discussed in the literature , nor 

is it necessarily practical for implementation.  Instead, 

it is intended to demonstrate how the capacity planning 

model and the marginal cost information rV.-'olo.ior. in 
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previous chapters can be used in nodels for determining 

peak-load prices.  There renain barriers to practical 

implementation of models to determine peak-load prices, 

some of which will be discussed in this chapter,  never- 

theless, the model presented here can serve as a guide 

to further research and to data gathering experiments 

for the design of practical peak-load pricing models. 

There are two main issues involved in designing a 

model for calculating peak-load prices.  One issue is 

specifying the supply and the demand models.  The supply 

model represents the relationship between quantity supplied 

and cost; in the model presented here, the capacity planning 

model serves as the supply model.  The demand model 

represents the relationship between quantity demanded and 

price.  There will be some discussion of demand models 

in the next section; however, it will generally be assumed 

that a relationship between demand and price is known, and 

its exact structure need not be specified here. 

The second issue, the one which will mainly be 

addressed here, is modeling how supply and demand interact 

to determine prices.  Prices are determined by the conditions 

for equilibrium in the marketplace.  Classically, these 

conditions have been stated as marginal conditions, 
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requiring differentiability of the cost functions in- 

volved.  However, it is well-known that the equilibrium 
3 

conditions can be converted into an optimization problem . 

VThen so stated, the differentiability conditions can be 

relaxed.  In this chapter, the peak-load pricinq problem 

will be formulated as an optimization, and it will be 

shown that subgradient information, developed i. the 

previous chapters of this part, can be used in place of 

derivative information in determining the prices. 

An important reason for integrating the capacity 

planning model discussed previously in this thesis into 

a peak-load pricing model is that the capacity planning model 

is sufficiently rich in structure to realistically 

represent the supply alternatives available to utilities. 

Much of the peak-load pricing research done previously 

has used comparatively simply supply models.  While 

these simple models have served well to advance the theory 

of peak-load pricing, more realistic representations will 

be required for the actual implementation of peak load 

pricing schemes.  The purpose of this chapter is to 

provide a technique for ut>l*1i these more complex supply 

models in determining peak-load prices. 
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In Section B, a formulation for an equilibrium model 

for determining peak-load prices is presented.  The 

formulation is bc.sed on the decomposition techniques 

discussed previously in this thesis.  In this model, the 

capacity planning model is used as a subproblem which 

calculates the cost of supplying given demand for 

electricity. An output of this subproblem is marginal 

cost information, in the form of subgradients of the 

cost function.  The master problem generates trial 

solutions for the equilibrium demand, using the demand 

model and the supply information from the subproblem. 

In Section C, some of the practical difficulties of 

implementing the proposed peak-load pricing model are 

discussed.  One of the major barriers is the lack of 

data on time-of-day price sensitivity of demand.  The 

use of the proposed model in structuring research and 

experiments on peak-load pricing is discussed. 

Peak-load pricing has received considerable attention 

in the economic research literature.  Much of the tradi- 
4 

tional work has used models where there is only a single 

generating technology or a single plant.  More recent 

work has extended the theory to consider diverse 

generating technologies and multiple plants.  A recent 

L 
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paper by Crew and Kleindorfer comes the closest to the 

work presented here.  They consider diverse technologies 

and uncertain demand (rather than supply) and derive 

equilibrium conditions for peak-load prices and capacity 

expansion.  However, these models have, so far, not 

considered models of supply with the richness of the 

capacity planning models presented here. 



281. 

B.  An Equilibrium Model for Peak-Load Pricing 

Since electric utilities are regulated monopolies, 

models of their pricing decisions can be based on either 

of two objectives - profit maximization, which leads to 

"monopolistic" pricing decisions, or welfare maximization, 

which leads to "competitive" pricing decisions.  In using 

profit maximization, the utility is generally subject to 

a constraint on allowed rate of return on invested 

capital, which serves to move the prices away from the 

unconstrained monopoly solution toward the competitive 

solution.  On the other hand, in using welfare maximization, 

the model attempts to simulate the competitive market 

situation to determine what the competitive solution would 

be if there were, in fact, a competitive market for 

electricity.  The model presented in this chapter will 

use welfare maximization as the objective, following much 

of %he  recent literature on peak-load pricing.  This 

criterion seems to be more acceptable to the regulatory 

authorities, as representatives of the public at large, 

and avoids some of the supposed biases of rate-of-return- 

constrained profit maximization.  The difficulty with it 

is that it requires information about demand which may 

be difficult or impossible to observe in practice. 
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The welfare maximization approach assumes the 

existence of a consumers' surplus function , CS(Q), 

which measures the benefit to consumers associated with 

a demand of Q.  Given a cost function TC(Q), which 

measures the cost to producers of supplying Q, the 

problem of welfare maximization is expressed as 

maximize CS (Q) - TC(Q). (12.1) 
Q 

Assuming, for the moment, that both CS and TC are 

differentiable and Q is unconstrained, the necessary 

condition for optimality in this problem is that 

3CS _ 8TC   ,   ,,  • 
3Q7 - 3Q7  for a11  i* 

l    l 

3TC The derivative ^7— is just the marginal cost function 3Q± 
3CS for commodity i.  The derivative -^r-    is the inverse 
3Qi 

of the demand function for commodity i, which gives the 

price consumers are willing to pay for commodity i.  Thus, 

this optimality condition is just the usual equilibrium 

condition for a competitive market, that price (as given 

by the market demand curve) is equal to marginal cost. 

This formulation will now be generalized to the case when 

the cost function TC is given by an optimization problem, 

such as has been discussed in Drevions Chapters.  It will 
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be assumed that the consumers' surplus function is available 

(the difficulties in measuring this function will be 

discussed in the next section). 

As before, let Q.  represent a vector of hourly 

demands Q   during year t, and let e.  be the relia- 

bility of service (measured by expected unserved energy) 

in year t.  Let CS(Q,,F,/.../Q_,e_)  be the consumers' 

surplus associated with the given demands and reliabilities 

(often, CS(Q1,E1, . .. ,QT,eT) = CS (Q1# . . . ,UT) - RUj^ ... ,eT> , 

where R is a rationing cost function, as discussed in 

Section D of Chapter 4).  As shown in Chapter 10, the 

cost of meeting the given demands and reliabilities is 

given by the capacity planning model (10.13) - (10.15) 

TC(Q1,e1,...,gT,eT) = minimum  C'X + E EF
t(Xt'Qt) 

x, Y .,..., y _     t= J. 

subject to EGt(Yt,Qt) < efc (12.2) 

0 < Y< 6tX 

The welfare maximization problem can then be written 
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maximize CS (Q, ,e ,. . . ,o,,e_) - C'X - I    EF. (Y.,Q.) 
Q1,.-.,QT    

L    X l     * t=l  t t t 

6- i • •. , e,p 

Xi' • • •' X»r 

subject to EGt(Yt,Qt) < e 

0 < It < «tx 

(12.3) 

t = 1,.. . ,T 

Qt > 0, et > 0 

As with the models discussed previously in this 

thesis, this model can be solved by a decomposition 

approach 

maximize 
2.1'" "QT1° 

1' ..,em>0 

cs(Q1,e1,...,oT,eT) ~ 

T"< 

V. 

minimum   C*X+ I  EFt(Y_t,Qt) 
X,Y,,...i±— t—1 

subject to EG (Y ,Q ) < e. 

0 < Y t < 6 X 

where the inner minimization just gives the function TC.  As 

has been suggested before, the function TC can be 

approximated by its subgradients.  That is the problem 

above can be written 

;12.4) 
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maximize   CS (Q.. ,£.,... ,Q_,e_) - Z (12.5) 

z 

subject to  Z > TC(Q,,e,,...,Q„,e_) V «l »«•!#•••# Vrp f t- rp J 

T 
+ E [it(Qt~Qt

) + 7rt(et"et)] (12.6) 

y»   /\ 

for all (Q^e^ .. . .Q^e.p) 

where Yt is a subgradient of TC with respect to Q. 

at Q.  and ir  is a subgradient with respect to e.  at 
A- 

£..  Both the values of TC and of the subgradients x and 

ir at a specific trial value (Q,,e,,.. . ,QT,eT)  can be 

found by solving the capacity planning problem (12.2) as 

described in Chapters 10 and 11.  In actual computation, 

this problem could be solved by a relaxation strategy in 

which the constraints (12.6) are generated successively. 

A relaxed master problem would be solved to generate a 

trial solution.  This relaxed problem has the form 

maximize   CS (Q ,e ,. . . ,Q ,e ) - Z (12.7) 

Ei c • • i ^in^.0 

Z 

k     k 
subject to Z  > TC £V'ei'**"£t'CT* + 



286. 

T 
+  z Ilt(St"Sj) + 1Tt(et'et)]  k=1'--"K  (12.8) 

where k  indexes the trial soltuion generated at 

st iteration k.  Using the K+l— trial solution generated 

by solving this problem, the capacity planning problem 

(12.2) is solved to evaluate TC and to determine the 

subgradients, to form a new constraint in the relaxed 

master problem.  This procedure continues, alternately 

solving the master and subproblems, until an optimal, 

or near-optimal, solution has been found. 

Notice that the proposed optimization model does not 

determine prices directly.  Instead, it determines the 

optimal quantities of electricity to be supplied,  Q., 

and the optimal reliability levels, e .  The prices can 

be determined from the optimality conditions on the master 

problem.  Suppose that an optimal solution is found at 

iteration K.  Let 8  be the dual multiplier associated 

with the k— constraint (12.8).  Then the Kuhn-Tucker 

conditions for the problem (12.7) - (12.8) give 

i) $sr Z  9kY^> 0 with equality 
3Qts  k=l   tS" 

when Q  > 0 
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+ Z   llt(St"St) + wt(,t"Ct>1  k=1'---«K  (12.8) 

where k indexes the trial soltuion generated at 

st iteration k.  Using the K+l— trial solution generated 

by solving this problem, the capacity planning problem 

(12.2) is solved to evaluate TC and to determine the 

subgradients, to form a new constraint in the relaxed 

master problem.  This procedure continues, alternately 

solving the master and subproblems, until an optimal, 

or near-optimal, solution has been found. 

Notice that the proposed optimization model does not 

determine prices directly.  Instead, it determines the 

optimal quantities of electricity to be supplied,  Q., 

and the optimal reliability levels, e..  The prices can 

be determined from the optimality conditions on the master 

problem.  Suppose that an optimal solution is found at 

k iteration K.  Let 0  be the dual multiplier associated 

with the k— constraint (12.8).  Then the Kuhn-Tucker 

conditions for the problem (12.7) - (12.8) give 

i)  IP I     0kY* > 0 with equality 
3Qts  k=l   tS~ 

when Q  > 0 

J 
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ii) ^- -     £  9 tr* > 0 with equality when e. > 0 
3et  k=l   t ~ t 

(generally,  e.  must be strictly positive for 

feasibility in the capacity planning model - 

it is impossible to reduce the unserved energy 

to zero at finite cost unless there is a perfectly 

reliable plant) 

1/- v 
iii)   E  8* • 1,  8  > 0 

k=l 

In condition (i), the derivative 3CS 
3Q 

gives the 
ts 

price of electricity in hour s of period t, by the defini- 

tion of the consumers' surplus function.  Thus, this con- 

dition can be used to compute the prices as a weighted 

combination of the subgradients generated by various trial 

solutions.  This condition is the analogue, for this model, 

of the usual "price = marginal cost" condition.  Condition (ii) 

can be interpreted in a similar ma mer.  It specifies that 

the marginal benefit of increased reliability (or the 

marginal reduction in rationing costs) must equal the 

marginal cost of providing increased reliability.. 

The relaxation strategy is not the only algorithm 

for solving this problem.  A number of alternative 

algorithms for equilibrium problems of this type have been 

9 discussec by Shaoiro' .'hey ".ire* a steepest ascent algorithm 
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based on subgradients and a primal-dual algorithm.  Both 

algorithms make use of the subgradient information in a 

somewhat more sophisticated way by using them to determine 

directions of change for the variables which improve the 

objective function.  However, the specific algorithm 

proposed to solve the problem is less important here 

than the idea that the subgradient information is of key 

importance in solving the problem.  The subgradients 

can be used even though marginal costs may not be 

uniquely defined. 

* 
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C.  Some Practical Issues 

This section considers some of the practical issues 

involved in actually implementing the peak-load pricing 

model described in the previous section.  The key issues 

mostly concern the specification of a demand model, which 

is embodied in the consumers' surplus function, and in 

gathering data sufficient to estimate the parameters of 

this model.  This section will not address the practicality 

or the advantages and disadvantages of peak-load pricing 

schemes themselves, but only the issues involved in 

designing a model for calculating peak-load prices. 

The practical issues of calculating peak-load prices 

have recently begun to receive a great deal of attention, 

as regulatory bodies in many states move toward imple- 

mentation of peak-load tariffs.  A major study  is now 

underway by the Electric Power Research Institute (EPRI) 

for the National Association of Regulatory Utility 

Commissioners of 

"the technology and cost of.time-of-day metering and 

electronic methods of controlling peak-period usage 

of electricity and also ... of the feasibility and 

cost of shifting various types of usage from peak 

to off-peak periods." 

i 

,  - 
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This study includes a detailed look at time-differentiated 

pricing schemes, which has included study of practical 

methods for calculating peak-load prices. 

The Rate Design Study suggests some of the major issues 

in the design of peak-load rate schedules.  These include 

i)  The selection of rating periods 

ii)  The calculation of marginal costs 

iii)  The allocation of marginal costs to rating 

periods 

iv)  The elasticity of demand 

Of these four issues, methods for dealing with the second 

and third have been discussed in depth in the earlier 

chapters of this part.  The remaining two will be discussed 

here. 

The model discussed previously in this part has 

assumed that prices will be set individually for each 

hour of the year; however, it is clearly impractical to 

do so.  The data required for such a model could not be 

practically collected, and the number of variables in the 

models would be enormous.  Furthermore, customers could 

not possibly deal with so many different prices.  In 

addition, since many hours have similar patterns of demand 
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and cost, the prices would not vary considerably within 

groups with similar characteristics.  It is therefore 

necessary to define a reasonably small number of types 

of pricing periods, with the same price prevailing 

during all hours which are included in a given type. 

Typically, four types of pricing periods might be used - 

say, summer peak, summer off-peak, winter peak, and 

winter off-peak. 

Using a small number of rating periods reduces both 

the amount of data required and the size of the model. 

Furthermore, for statistical purposes, it might be 

assumed that observations of demand in all hours of a 

given type of rating period are independent observations 

of the same random variable, thus effectively reducing the 

number of variables to be observed for estimation purposes, 

However, reducing the number of prices to be considered 

induces some loss of welfare because it requires de- 

partures from the marginal cost prices which would prevail 

if prices were set individually for each hour (this loss 

is probably very slight). 

The major barrier to implementing a practical 

peak-load pricing model is the lack of data on the price 

elasticity of demand for electricity at different times 

of the day.  As has been observed in a recent survey 
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12 
by Taylor  , there have been many econometric studies of 

demand for electricity, but, by and large, these studies 

have dealt with estimating annual demand for electric 

energy, usually by customer class (residential, commercial, 

or industrial).  Because the price of electricity has 

never been charged on the basis of the time of day at 

which it is consumed, there is almost no data available 

on the price elasticity of demand by time of day. 

Studies are underway, however, sponsored by the Department 

of Energy, to experimentally determine these elasticities. 

These experiments have been small and of short duration, 

so far, and much additional data is needed. 

As Wenders points out, the starting point for any 

time-of-day pricing experiment is a workable model of 

demand, which shows what data needs to be measured.  Such 

a model must be designed so that its parameters can be 

estimated by econometric techniques and so that it provides 

the information required by a peak-load pricing model like 

the one presented in the previous section.  However, an 

additional degree of freedom is available here which is 

not usually present in econometric studies - the opportunity 

to design the experiment and to determine what data is to 

be collected and how it is to be measured.  Thus, techniques 
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from the realm of statistical design of experiments could 

also be brought to bear. 

In addition to having a statistically tractable form, 

the demand model must be usable within an equilibrium 

model for calculating the peak-load prices.  The model 

(12.3) of the previous section uses the consumers' surplus 

function as a measure of welfare.  The consumers' surplus 

function has a number of difficulties.  First, some rather 

stringent theoretical assumptions must be made about demand 

in order for this function to exist.  These assumptions, 

called "integrability conditions" are the subject of 

some long-standing controversy in the economic literature. 

Second, econometricians are much more familiar with 

estimating demand functions than surplus functions, and 

therefore, it will be necessary to formulate estimable 

models for the consumers' surplus.  One problem here is 

that since the surplus function is essentially the integral 

of the demand function, estimating the surplus function may 

require a good global estimate of the demand function, much 

more difficult to get than a good local estimate.  Finally, 

the model (12.3) does not include prices explicitly. 

Formulating a model which is based on prices as decision 

variables may eliminate the need to work with the consumers' 

surplus and allow the demand functions to be used directly. 

• 
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As a final point, it should be noted that while a 

great deal has been said here about uncertainty on the 

supply side, nothing has been said about uncertainty 

on the demand side.  Yet, uncertainty about demand, both 

short-term and long-term, is dS much a factor in planning 

and pricing decisions as is uncertainty about supply. 

Not only is the size of the peak load uncertain, but also 

is its hour of occurrence.  Furthermore, the future growth 

of electricity demand is also highly uncertain.  It 

would therefore be very useful to formulate a demand 

model which gives a probability distribution for demand 

rather than a point estimate.  It seems that the analysis 

given in previous chapters could be carried through with 

uncertain demand as well, providing better estimates of 

expected cost and reliability.  It would be necessary 

to extend the concept of a load duration curve to pro- 

babilistic demand.  It would also be necessary to formu- 

late a demand model including uncertainty and to 

determine what data would be needed in order to estimate 

its parameters. 

1 



295. 

Footnotes 

*d 
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' 
Chapter 2 Notes 

• 
1. See Anderson [1]. 

2. See Masse1 and Gibrat [24]. 

3. See Fernandez and Manne [12]. 

4. See Gately [15, 16]. 

5. See Noonan and Giglio [26, 27]« 

6. See Anderson, op_. cit, pp. 286-287. 

7. A similar argument is given by Turvey in [38]. 
* 

8. See Lasdon [23]. 
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Chapter 3 Notes 
< 

1. See Geoffrion [17]. 

2. See Phillips et al. [28]. 

3. See Bessiere [5]. 

4. See Beglari and Laughton [4], 

i 

1 

i 

• 

• 

I 

i 
M 
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Chapter 4 Notes 

1. Despite its name, probabilistic simulation is not a 

simulation in the more usual, Monte Carlo sense, but 

an analytic calculation.  The name is derived from 

the traditional use, by power engineers, of the term 

"simulation" to indicate the process of determining 

the operating costs of a generating system, by any 

method.  This is the sense in which Anderson [1] uses 

the term simulation. 

2. See, for example, Billinton et al. [6] for a brief 

history. 

3. See Baleriaux et al. [3] and Booth [9].  See also Joy 

and Jenkins [22], Finger [13], and Vardi et al. [40]. 

4. See Schweppe et al. [31]. 

5. Private communication to the author. 

6. See Beglari and Laughton [4]. 

7. See, for example, Billinton et al. [6], 

8. See Telson [36]. 

9. Ibid., p. 133. 

10.  See, for example, Crew and Kleindorfer [10] and 

Turvey and Anderson [39]. 

. 
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Chapter 5 Notes 

1. See Schweppe et al. [31]. 

2. See Finger [13, 14]. 
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Chapter 6 Notes 

1. See Jacoby [20]. 

2. See Joy and Jenkins [22]. 

3. See Finger [13]. 

4. See Noonan and Giglio [26, 27]. 

5. See Vardi, et al. [40]. 

6. See Crew and Kleindorfer [10]. 
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Introduction to Part Three Notes 

1. See Joskow [21]. 

2. This argument is also made by Turvey in [38] 

3. See Vardi, et al., [41]. 
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Chapter 10 Notes 

1. See Vardi, et al., [41]. 

2. See Scherer, [30]. 

3. See Telson, [36]. 

4. See Vardi, et al., op_. cit. 
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Chapter 11 Notes 

1. See Geoffrion [17, 18]. 

2. See Hogan [19]. 

3. See Shapiro [33]. 

4. See Geoffrion [18]. 

* 
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Chapter 12 Notes 

1. See Crew and Kleindorfer [10]. 

2. See the survey by Joskow [21]. 

3. See, for example, Shapiro [32]. 

4. See, for example, Boiteaux [8], Steiner [34], and 

Bailey and White [2]. 

5. See, for example, Wenders [42], Turvey [37, 38], and 

Turvey and Anderson [39]. 

6. See Crew and Kleindorfer, op_. cit. 

7. Pressman [29] discusses the derivation and use of 

consumers' surplus functions in peak-load pricing models, 

8. Shapiro [32] suggests similar approaches to general 

equilibrium problems of this type. 

9.  Shapiro, op_. cit. 

10. See Electric utility Rate Design Study [11]. 

11. Ibid, p. 1. 

12. See Taylor [35]. 

13. See Wenders and Taylor [43]. 

• 

i 

. 
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Index of Notation 

Symbol Definition 

x,x' A vector x and its transpose. 

C-   iC Capital cost per unit of capacity of plant 
^ (j»v) and vector of C. . 

CS(Q,E) Consvimers' surplus function. 

e A vector of ones. 

EFfc(Yt' Expected system operating cost function in 
period t. 

EF*(X,Q,e) Minimum system operating cost. 

EG.(Y ) Expected unserved energy function in period t. 

F. .,F Operating cost per unit of energy produced }Vt' by plant (j,v) in period t (merit order 
index i). 

F.(U.)        Operating cost function in period t. 

f(x,£)        General objective function with two vector 
arguments. 

g(x,y_)        General constraint function with two vector 
arguments. 

G(Q) System load duration curve. 

G(Q,Q*)       Step-function load duration curve. 

G.(Q) Equivalent load duration curve faced by plant i, 

9^(0)r9i (Q;Y)  Loss-of-Load Probability faced by plant i when 
load is Q. 

h.(s) Loss-of-Load Probability faced by plant i in 
hour s. 

H.•(U)        Derivative of expected energy produced by 
-1 plant i with rrspecc to utilization level of 

plant j, j * i. 



313. 

Hhvt(I> 

W 
i 

j 

k 

Hydro-energy available from plant (h,v) in 
interval I. 

Number of plants in the merit order of 
period t. 

Set of operative plants in outage state o 
and its complement. 

Index of plants in merit order. 

Index for plant type. 

Merit order index for plants in a given outage 
state. 

k,4 

L(x,X) 

Ls 

M^ 

MC(Qst) 

MC(et) 

m ,m 

Nt 

n 

Pi 

«Ji 

Q 

Index for Benders' cuts generated for the 
master problem. 

Lagrangian Function. 

Auxiliary variable for load in hour s, Q . 
S 

Constraint Matrix for defining plant loading 
points U.. 

Marginal cost associated with demand component 
Qsf 

Marginal cost associated with reliability e.. 

Random variable for length of operation before 
a plant fails and its mean. 

Constraint vector for defining peak load 
constraint. 

Index of marginal plant. 

Availability of plant i. 

• 1-p.  Forced outage rate of plant i. 

System load. 

Peak load in period t. 
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Q Vector representing load duration curve in 
period t. 

r,r Random variable for repair time after a plant 
fails and its mean. 

a Index for subintervals of time and for hourly 
demand components. 

TC(Q,e)       Total cost of building and operating a generating 
system; optimal value of capacity planning model. 

t Index for time period. 

Ü ,0. Cumulative capacity of all plants through i in '-t merit order (load point of plant i+1) ,  and 
vector of these for period t. 

i U Stands for any U 

U1 Random variable for cumulative available 
capacity through plant i. 

V~ Cumulative available capacity through plant i 
in outage state a. 

v index for plant vintage (negative value 
implies an existing plant). 

v(v>) Optimal value of parametric mathematical 
program. 

v(yjAy_)       Directional derivative of v at y_ in direction 
Ay.. 

W(Q) Integrated load duration function. 

Xj »X ,X Plant (power) capacity. 

y.vt#Y
i,Yt Plant utilization level. 

0.. Probability factor <U<tj>.*• • •^fc+l'' 

Y Subgradient of v (y_). 
A 

Y Margina] operating cost associated with load 
in hour s, Q . 
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•&S 

AEi(Y
1) 

H = Ijli'Il2^ 

10 

I» 'Et 

i = [£i'I2
] 

Index set of periods t in which the k  trial 
solution X* violates the unserved energy 
constraint. 

Indicator constant which converts plant 
indices (j,v) into merit order indices in 
period t and matrix which sorts plants into 
merit order in period t. 

Expected difference in operating cost between 
plant j and next available plant in merit 
order. 

Expected energy produced by i  plant operating 
at level Y1. 

Reliability level, loss-of-load probability or 
expected unserved energy. 

Subgradient of the constraint function g(x,y_). 

Indicates whether or  not plant i is available 
in outage state o. 

The length of time interval s. 

Shadow price on k  cost constraint in master 
problem. 

Dual multiplier on capacity constraint and 
vector of these for period t. 

Dual feasible region for LP subproblem. 

Dual multiplier associated with an infeasible 
subproblem and vector of these for period t. 

Shadow price on k  feasibility constraint in 
master problem. 

Subgradient of the objective function f(x,y_). 

End point for interval of constant value for g. . 

Dual multiplier on demand, peak-load, or 
reliability constraint. 
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ts 

T 

a 

II 

Index for outage states, or intervals of 
constant value for g.. 

Primal feasible region for LP subproblem. 

Time (as a continuous parameter)- 

Probability of outage state a. 

Constant value of function g.. 

Feasible region for capacity variables X. 

End of proof. 

!   ' 
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